|
|
|
from numbers import Number |
|
|
|
import torch |
|
from torch import nan |
|
from torch.distributions import constraints |
|
from torch.distributions.exp_family import ExponentialFamily |
|
from torch.distributions.utils import ( |
|
broadcast_all, |
|
lazy_property, |
|
logits_to_probs, |
|
probs_to_logits, |
|
) |
|
from torch.nn.functional import binary_cross_entropy_with_logits |
|
|
|
__all__ = ["Bernoulli"] |
|
|
|
|
|
class Bernoulli(ExponentialFamily): |
|
r""" |
|
Creates a Bernoulli distribution parameterized by :attr:`probs` |
|
or :attr:`logits` (but not both). |
|
|
|
Samples are binary (0 or 1). They take the value `1` with probability `p` |
|
and `0` with probability `1 - p`. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Bernoulli(torch.tensor([0.3])) |
|
>>> m.sample() # 30% chance 1; 70% chance 0 |
|
tensor([ 0.]) |
|
|
|
Args: |
|
probs (Number, Tensor): the probability of sampling `1` |
|
logits (Number, Tensor): the log-odds of sampling `1` |
|
""" |
|
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} |
|
support = constraints.boolean |
|
has_enumerate_support = True |
|
_mean_carrier_measure = 0 |
|
|
|
def __init__(self, probs=None, logits=None, validate_args=None): |
|
if (probs is None) == (logits is None): |
|
raise ValueError( |
|
"Either `probs` or `logits` must be specified, but not both." |
|
) |
|
if probs is not None: |
|
is_scalar = isinstance(probs, Number) |
|
(self.probs,) = broadcast_all(probs) |
|
else: |
|
is_scalar = isinstance(logits, Number) |
|
(self.logits,) = broadcast_all(logits) |
|
self._param = self.probs if probs is not None else self.logits |
|
if is_scalar: |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self._param.size() |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Bernoulli, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
if "probs" in self.__dict__: |
|
new.probs = self.probs.expand(batch_shape) |
|
new._param = new.probs |
|
if "logits" in self.__dict__: |
|
new.logits = self.logits.expand(batch_shape) |
|
new._param = new.logits |
|
super(Bernoulli, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def _new(self, *args, **kwargs): |
|
return self._param.new(*args, **kwargs) |
|
|
|
@property |
|
def mean(self): |
|
return self.probs |
|
|
|
@property |
|
def mode(self): |
|
mode = (self.probs >= 0.5).to(self.probs) |
|
mode[self.probs == 0.5] = nan |
|
return mode |
|
|
|
@property |
|
def variance(self): |
|
return self.probs * (1 - self.probs) |
|
|
|
@lazy_property |
|
def logits(self): |
|
return probs_to_logits(self.probs, is_binary=True) |
|
|
|
@lazy_property |
|
def probs(self): |
|
return logits_to_probs(self.logits, is_binary=True) |
|
|
|
@property |
|
def param_shape(self): |
|
return self._param.size() |
|
|
|
def sample(self, sample_shape=torch.Size()): |
|
shape = self._extended_shape(sample_shape) |
|
with torch.no_grad(): |
|
return torch.bernoulli(self.probs.expand(shape)) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
logits, value = broadcast_all(self.logits, value) |
|
return -binary_cross_entropy_with_logits(logits, value, reduction="none") |
|
|
|
def entropy(self): |
|
return binary_cross_entropy_with_logits( |
|
self.logits, self.probs, reduction="none" |
|
) |
|
|
|
def enumerate_support(self, expand=True): |
|
values = torch.arange(2, dtype=self._param.dtype, device=self._param.device) |
|
values = values.view((-1,) + (1,) * len(self._batch_shape)) |
|
if expand: |
|
values = values.expand((-1,) + self._batch_shape) |
|
return values |
|
|
|
@property |
|
def _natural_params(self): |
|
return (torch.logit(self.probs),) |
|
|
|
def _log_normalizer(self, x): |
|
return torch.log1p(torch.exp(x)) |
|
|