|
|
|
from numbers import Number |
|
|
|
import torch |
|
from torch.distributions import constraints |
|
from torch.distributions.exp_family import ExponentialFamily |
|
from torch.distributions.utils import broadcast_all |
|
|
|
__all__ = ["Poisson"] |
|
|
|
|
|
class Poisson(ExponentialFamily): |
|
r""" |
|
Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter. |
|
|
|
Samples are nonnegative integers, with a pmf given by |
|
|
|
.. math:: |
|
\mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +SKIP("poisson_cpu not implemented for 'Long'") |
|
>>> m = Poisson(torch.tensor([4])) |
|
>>> m.sample() |
|
tensor([ 3.]) |
|
|
|
Args: |
|
rate (Number, Tensor): the rate parameter |
|
""" |
|
arg_constraints = {"rate": constraints.nonnegative} |
|
support = constraints.nonnegative_integer |
|
|
|
@property |
|
def mean(self): |
|
return self.rate |
|
|
|
@property |
|
def mode(self): |
|
return self.rate.floor() |
|
|
|
@property |
|
def variance(self): |
|
return self.rate |
|
|
|
def __init__(self, rate, validate_args=None): |
|
(self.rate,) = broadcast_all(rate) |
|
if isinstance(rate, Number): |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self.rate.size() |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Poisson, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.rate = self.rate.expand(batch_shape) |
|
super(Poisson, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def sample(self, sample_shape=torch.Size()): |
|
shape = self._extended_shape(sample_shape) |
|
with torch.no_grad(): |
|
return torch.poisson(self.rate.expand(shape)) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
rate, value = broadcast_all(self.rate, value) |
|
return value.xlogy(rate) - rate - (value + 1).lgamma() |
|
|
|
@property |
|
def _natural_params(self): |
|
return (torch.log(self.rate),) |
|
|
|
def _log_normalizer(self, x): |
|
return torch.exp(x) |
|
|