|
|
|
import copy |
|
from typing import Optional, Any, Union, Callable |
|
|
|
import torch |
|
import warnings |
|
from torch import Tensor |
|
from .. import functional as F |
|
from .module import Module |
|
from .activation import MultiheadAttention |
|
from .container import ModuleList |
|
from ..init import xavier_uniform_ |
|
from .dropout import Dropout |
|
from .linear import Linear |
|
from .normalization import LayerNorm |
|
|
|
__all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer'] |
|
|
|
def _generate_square_subsequent_mask( |
|
sz: int, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> Tensor: |
|
r"""Generate a square causal mask for the sequence. |
|
|
|
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). |
|
""" |
|
if device is None: |
|
device = torch.device('cpu') |
|
if dtype is None: |
|
dtype = torch.float32 |
|
return torch.triu( |
|
torch.full((sz, sz), float('-inf'), dtype=dtype, device=device), |
|
diagonal=1, |
|
) |
|
|
|
|
|
def _get_seq_len( |
|
src: Tensor, |
|
batch_first: bool |
|
) -> Optional[int]: |
|
|
|
if src.is_nested: |
|
return None |
|
else: |
|
src_size = src.size() |
|
if len(src_size) == 2: |
|
|
|
return src_size[0] |
|
else: |
|
|
|
seq_len_pos = 1 if batch_first else 0 |
|
return src_size[seq_len_pos] |
|
|
|
|
|
class Transformer(Module): |
|
r"""A transformer model. |
|
|
|
User is able to modify the attributes as needed. The architecture |
|
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, |
|
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and |
|
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information |
|
Processing Systems, pages 6000-6010. |
|
|
|
Args: |
|
d_model: the number of expected features in the encoder/decoder inputs (default=512). |
|
nhead: the number of heads in the multiheadattention models (default=8). |
|
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6). |
|
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). |
|
dim_feedforward: the dimension of the feedforward network model (default=2048). |
|
dropout: the dropout value (default=0.1). |
|
activation: the activation function of encoder/decoder intermediate layer, can be a string |
|
("relu" or "gelu") or a unary callable. Default: relu |
|
custom_encoder: custom encoder (default=None). |
|
custom_decoder: custom decoder (default=None). |
|
layer_norm_eps: the eps value in layer normalization components (default=1e-5). |
|
batch_first: If ``True``, then the input and output tensors are provided |
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). |
|
norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before |
|
other attention and feedforward operations, otherwise after. Default: ``False`` (after). |
|
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive |
|
bias. Default: ``True``. |
|
|
|
Examples:: |
|
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) |
|
>>> src = torch.rand((10, 32, 512)) |
|
>>> tgt = torch.rand((20, 32, 512)) |
|
>>> out = transformer_model(src, tgt) |
|
|
|
Note: A full example to apply nn.Transformer module for the word language model is available in |
|
https://github.com/pytorch/examples/tree/master/word_language_model |
|
""" |
|
|
|
def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6, |
|
num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, |
|
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, |
|
custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None, |
|
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, |
|
bias: bool = True, device=None, dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}") |
|
|
|
if custom_encoder is not None: |
|
self.encoder = custom_encoder |
|
else: |
|
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, |
|
activation, layer_norm_eps, batch_first, norm_first, |
|
bias, **factory_kwargs) |
|
encoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) |
|
|
|
if custom_decoder is not None: |
|
self.decoder = custom_decoder |
|
else: |
|
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, |
|
activation, layer_norm_eps, batch_first, norm_first, |
|
bias, **factory_kwargs) |
|
decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) |
|
|
|
self._reset_parameters() |
|
|
|
self.d_model = d_model |
|
self.nhead = nhead |
|
|
|
self.batch_first = batch_first |
|
|
|
def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, |
|
src_is_causal: Optional[bool] = None, tgt_is_causal: Optional[bool] = None, |
|
memory_is_causal: bool = False) -> Tensor: |
|
r"""Take in and process masked source/target sequences. |
|
|
|
.. note:: |
|
|
|
If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are |
|
not allowed to participate in the attention, |
|
which is the opposite of the definition for :attr:`attn_mask` |
|
in :func:`torch.nn.functional.scaled_dot_product_attention`. |
|
|
|
Args: |
|
src: the sequence to the encoder (required). |
|
tgt: the sequence to the decoder (required). |
|
src_mask: the additive mask for the src sequence (optional). |
|
tgt_mask: the additive mask for the tgt sequence (optional). |
|
memory_mask: the additive mask for the encoder output (optional). |
|
src_key_padding_mask: the Tensor mask for src keys per batch (optional). |
|
tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional). |
|
memory_key_padding_mask: the Tensor mask for memory keys per batch (optional). |
|
src_is_causal: If specified, applies a causal mask as ``src_mask``. |
|
Default: ``None``; try to detect a causal mask. |
|
Warning: |
|
``src_is_causal`` provides a hint that ``src_mask`` is |
|
the causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``. |
|
Default: ``None``; try to detect a causal mask. |
|
Warning: |
|
``tgt_is_causal`` provides a hint that ``tgt_mask`` is |
|
the causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
memory_is_causal: If specified, applies a causal mask as |
|
``memory_mask``. |
|
Default: ``False``. |
|
Warning: |
|
``memory_is_causal`` provides a hint that |
|
``memory_mask`` is the causal mask. Providing incorrect |
|
hints can result in incorrect execution, including |
|
forward and backward compatibility. |
|
|
|
Shape: |
|
- src: :math:`(S, E)` for unbatched input, :math:`(S, N, E)` if `batch_first=False` or |
|
`(N, S, E)` if `batch_first=True`. |
|
- tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or |
|
`(N, T, E)` if `batch_first=True`. |
|
- src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`. |
|
- tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`. |
|
- memory_mask: :math:`(T, S)`. |
|
- src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`. |
|
- tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`. |
|
- memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`. |
|
|
|
Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked |
|
positions. If a BoolTensor is provided, positions with ``True`` |
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor |
|
is provided, it will be added to the attention weight. |
|
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by |
|
the attention. If a BoolTensor is provided, the positions with the |
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. |
|
|
|
- output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or |
|
`(N, T, E)` if `batch_first=True`. |
|
|
|
Note: Due to the multi-head attention architecture in the transformer model, |
|
the output sequence length of a transformer is same as the input sequence |
|
(i.e. target) length of the decoder. |
|
|
|
where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the |
|
batch size, :math:`E` is the feature number |
|
|
|
Examples: |
|
>>> # xdoctest: +SKIP |
|
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) |
|
""" |
|
is_batched = src.dim() == 3 |
|
if not self.batch_first and src.size(1) != tgt.size(1) and is_batched: |
|
raise RuntimeError("the batch number of src and tgt must be equal") |
|
elif self.batch_first and src.size(0) != tgt.size(0) and is_batched: |
|
raise RuntimeError("the batch number of src and tgt must be equal") |
|
|
|
if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model: |
|
raise RuntimeError("the feature number of src and tgt must be equal to d_model") |
|
|
|
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask, |
|
is_causal=src_is_causal) |
|
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal) |
|
return output |
|
|
|
@staticmethod |
|
def generate_square_subsequent_mask( |
|
sz: int, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> Tensor: |
|
r"""Generate a square causal mask for the sequence. |
|
|
|
The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). |
|
""" |
|
return _generate_square_subsequent_mask(sz, dtype=dtype, device=device) |
|
|
|
def _reset_parameters(self): |
|
r"""Initiate parameters in the transformer model.""" |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
xavier_uniform_(p) |
|
|
|
|
|
class TransformerEncoder(Module): |
|
r"""TransformerEncoder is a stack of N encoder layers. |
|
|
|
Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. |
|
|
|
Args: |
|
encoder_layer: an instance of the TransformerEncoderLayer() class (required). |
|
num_layers: the number of sub-encoder-layers in the encoder (required). |
|
norm: the layer normalization component (optional). |
|
enable_nested_tensor: if True, input will automatically convert to nested tensor |
|
(and convert back on output). This will improve the overall performance of |
|
TransformerEncoder when padding rate is high. Default: ``True`` (enabled). |
|
|
|
Examples:: |
|
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) |
|
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) |
|
>>> src = torch.rand(10, 32, 512) |
|
>>> out = transformer_encoder(src) |
|
""" |
|
|
|
__constants__ = ['norm'] |
|
|
|
def __init__( |
|
self, |
|
encoder_layer: "TransformerEncoderLayer", |
|
num_layers: int, |
|
norm: Optional[Module] = None, |
|
enable_nested_tensor: bool = True, |
|
mask_check: bool = True |
|
) -> None: |
|
super().__init__() |
|
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}") |
|
self.layers = _get_clones(encoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
|
|
self.enable_nested_tensor = enable_nested_tensor |
|
|
|
self.use_nested_tensor = enable_nested_tensor |
|
self.mask_check = mask_check |
|
|
|
enc_layer = "encoder_layer" |
|
why_not_sparsity_fast_path = '' |
|
if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer): |
|
why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer" |
|
elif encoder_layer.norm_first : |
|
why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True" |
|
elif not encoder_layer.self_attn.batch_first: |
|
why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" + |
|
"(use batch_first for better inference performance)") |
|
elif not encoder_layer.self_attn._qkv_same_embed_dim: |
|
why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True" |
|
elif encoder_layer.self_attn.in_proj_bias is None: |
|
why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False" |
|
elif not encoder_layer.activation_relu_or_gelu: |
|
why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True" |
|
elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) : |
|
why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps" |
|
elif encoder_layer.self_attn.num_heads % 2 == 1: |
|
why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd" |
|
|
|
if enable_nested_tensor and why_not_sparsity_fast_path: |
|
warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") |
|
self.use_nested_tensor = False |
|
|
|
|
|
def forward( |
|
self, |
|
src: Tensor, |
|
mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
is_causal: Optional[bool] = None) -> Tensor: |
|
r"""Pass the input through the encoder layers in turn. |
|
|
|
Args: |
|
src: the sequence to the encoder (required). |
|
mask: the mask for the src sequence (optional). |
|
src_key_padding_mask: the mask for the src keys per batch (optional). |
|
is_causal: If specified, applies a causal mask as ``mask``. |
|
Default: ``None``; try to detect a causal mask. |
|
Warning: |
|
``is_causal`` provides a hint that ``mask`` is the |
|
causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
|
|
Shape: |
|
see the docs in :class:`~torch.nn.Transformer`. |
|
""" |
|
src_key_padding_mask = F._canonical_mask( |
|
mask=src_key_padding_mask, |
|
mask_name="src_key_padding_mask", |
|
other_type=F._none_or_dtype(mask), |
|
other_name="mask", |
|
target_type=src.dtype |
|
) |
|
|
|
mask = F._canonical_mask( |
|
mask=mask, |
|
mask_name="mask", |
|
other_type=None, |
|
other_name="", |
|
target_type=src.dtype, |
|
check_other=False, |
|
) |
|
|
|
output = src |
|
convert_to_nested = False |
|
first_layer = self.layers[0] |
|
src_key_padding_mask_for_layers = src_key_padding_mask |
|
why_not_sparsity_fast_path = '' |
|
str_first_layer = "self.layers[0]" |
|
batch_first = first_layer.self_attn.batch_first |
|
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled() |
|
|
|
if not is_fastpath_enabled: |
|
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True" |
|
elif not hasattr(self, "use_nested_tensor"): |
|
why_not_sparsity_fast_path = "use_nested_tensor attribute not present" |
|
elif not self.use_nested_tensor: |
|
why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True" |
|
elif first_layer.training: |
|
why_not_sparsity_fast_path = f"{str_first_layer} was in training mode" |
|
elif not src.dim() == 3: |
|
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}" |
|
elif src_key_padding_mask is None: |
|
why_not_sparsity_fast_path = "src_key_padding_mask was None" |
|
elif (((not hasattr(self, "mask_check")) or self.mask_check) |
|
and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())): |
|
why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned" |
|
elif output.is_nested: |
|
why_not_sparsity_fast_path = "NestedTensor input is not supported" |
|
elif mask is not None: |
|
why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied" |
|
elif torch.is_autocast_enabled(): |
|
why_not_sparsity_fast_path = "autocast is enabled" |
|
|
|
if not why_not_sparsity_fast_path: |
|
tensor_args = ( |
|
src, |
|
first_layer.self_attn.in_proj_weight, |
|
first_layer.self_attn.in_proj_bias, |
|
first_layer.self_attn.out_proj.weight, |
|
first_layer.self_attn.out_proj.bias, |
|
first_layer.norm1.weight, |
|
first_layer.norm1.bias, |
|
first_layer.norm2.weight, |
|
first_layer.norm2.bias, |
|
first_layer.linear1.weight, |
|
first_layer.linear1.bias, |
|
first_layer.linear2.weight, |
|
first_layer.linear2.bias, |
|
) |
|
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name] |
|
if torch.overrides.has_torch_function(tensor_args): |
|
why_not_sparsity_fast_path = "some Tensor argument has_torch_function" |
|
elif src.device.type not in _supported_device_type: |
|
why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}" |
|
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args): |
|
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the " |
|
"input/output projection weights or biases requires_grad") |
|
|
|
if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None): |
|
convert_to_nested = True |
|
output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False) |
|
src_key_padding_mask_for_layers = None |
|
|
|
seq_len = _get_seq_len(src, batch_first) |
|
is_causal = _detect_is_causal_mask(mask, is_causal, seq_len) |
|
|
|
for mod in self.layers: |
|
output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers) |
|
|
|
if convert_to_nested: |
|
output = output.to_padded_tensor(0., src.size()) |
|
|
|
if self.norm is not None: |
|
output = self.norm(output) |
|
|
|
return output |
|
|
|
|
|
class TransformerDecoder(Module): |
|
r"""TransformerDecoder is a stack of N decoder layers. |
|
|
|
Args: |
|
decoder_layer: an instance of the TransformerDecoderLayer() class (required). |
|
num_layers: the number of sub-decoder-layers in the decoder (required). |
|
norm: the layer normalization component (optional). |
|
|
|
Examples:: |
|
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) |
|
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) |
|
>>> memory = torch.rand(10, 32, 512) |
|
>>> tgt = torch.rand(20, 32, 512) |
|
>>> out = transformer_decoder(tgt, memory) |
|
""" |
|
|
|
__constants__ = ['norm'] |
|
|
|
def __init__( |
|
self, |
|
decoder_layer: "TransformerDecoderLayer", |
|
num_layers: int, |
|
norm: Optional[Module] = None |
|
) -> None: |
|
super().__init__() |
|
torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}") |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
|
|
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None, |
|
memory_is_causal: bool = False) -> Tensor: |
|
r"""Pass the inputs (and mask) through the decoder layer in turn. |
|
|
|
Args: |
|
tgt: the sequence to the decoder (required). |
|
memory: the sequence from the last layer of the encoder (required). |
|
tgt_mask: the mask for the tgt sequence (optional). |
|
memory_mask: the mask for the memory sequence (optional). |
|
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). |
|
memory_key_padding_mask: the mask for the memory keys per batch (optional). |
|
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``. |
|
Default: ``None``; try to detect a causal mask. |
|
Warning: |
|
``tgt_is_causal`` provides a hint that ``tgt_mask`` is |
|
the causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
memory_is_causal: If specified, applies a causal mask as |
|
``memory mask``. |
|
Default: ``False``. |
|
Warning: |
|
``memory_is_causal`` provides a hint that |
|
``memory_mask`` is the causal mask. Providing incorrect |
|
hints can result in incorrect execution, including |
|
forward and backward compatibility. |
|
|
|
Shape: |
|
see the docs in :class:`~torch.nn.Transformer`. |
|
""" |
|
output = tgt |
|
|
|
seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first) |
|
tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len) |
|
|
|
for mod in self.layers: |
|
output = mod(output, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
tgt_is_causal=tgt_is_causal, |
|
memory_is_causal=memory_is_causal) |
|
|
|
if self.norm is not None: |
|
output = self.norm(output) |
|
|
|
return output |
|
|
|
class TransformerEncoderLayer(Module): |
|
r"""TransformerEncoderLayer is made up of self-attn and feedforward network. |
|
|
|
This standard encoder layer is based on the paper "Attention Is All You Need". |
|
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, |
|
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in |
|
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement |
|
in a different way during application. |
|
|
|
TransformerEncoderLayer can handle either traditional torch.tensor inputs, |
|
or Nested Tensor inputs. Derived classes are expected to similarly accept |
|
both input formats. (Not all combinations of inputs are currently |
|
supported by TransformerEncoderLayer while Nested Tensor is in prototype |
|
state.) |
|
|
|
If you are implementing a custom layer, you may derive it either from |
|
the Module or TransformerEncoderLayer class. If your custom layer |
|
supports both torch.Tensors and Nested Tensors inputs, make its |
|
implementation a derived class of TransformerEncoderLayer. If your custom |
|
Layer supports only torch.Tensor inputs, derive its implementation from |
|
Module. |
|
|
|
Args: |
|
d_model: the number of expected features in the input (required). |
|
nhead: the number of heads in the multiheadattention models (required). |
|
dim_feedforward: the dimension of the feedforward network model (default=2048). |
|
dropout: the dropout value (default=0.1). |
|
activation: the activation function of the intermediate layer, can be a string |
|
("relu" or "gelu") or a unary callable. Default: relu |
|
layer_norm_eps: the eps value in layer normalization components (default=1e-5). |
|
batch_first: If ``True``, then the input and output tensors are provided |
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). |
|
norm_first: if ``True``, layer norm is done prior to attention and feedforward |
|
operations, respectively. Otherwise it's done after. Default: ``False`` (after). |
|
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive |
|
bias. Default: ``True``. |
|
|
|
Examples:: |
|
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) |
|
>>> src = torch.rand(10, 32, 512) |
|
>>> out = encoder_layer(src) |
|
|
|
Alternatively, when ``batch_first`` is ``True``: |
|
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) |
|
>>> src = torch.rand(32, 10, 512) |
|
>>> out = encoder_layer(src) |
|
|
|
Fast path: |
|
forward() will use a special optimized implementation described in |
|
`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following |
|
conditions are met: |
|
|
|
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor |
|
argument ``requires_grad`` |
|
- training is disabled (using ``.eval()``) |
|
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``) |
|
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu`` |
|
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed |
|
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask`` |
|
nor ``src_key_padding_mask`` is passed |
|
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case |
|
unless the caller has manually modified one without modifying the other) |
|
|
|
If the optimized implementation is in use, a |
|
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be |
|
passed for ``src`` to represent padding more efficiently than using a padding |
|
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be |
|
returned, and an additional speedup proportional to the fraction of the input that |
|
is padding can be expected. |
|
|
|
.. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`: |
|
https://arxiv.org/abs/2205.14135 |
|
|
|
""" |
|
|
|
__constants__ = ['norm_first'] |
|
|
|
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, |
|
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, |
|
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, |
|
bias: bool = True, device=None, dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, |
|
bias=bias, batch_first=batch_first, |
|
**factory_kwargs) |
|
|
|
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs) |
|
self.dropout = Dropout(dropout) |
|
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs) |
|
|
|
self.norm_first = norm_first |
|
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.dropout1 = Dropout(dropout) |
|
self.dropout2 = Dropout(dropout) |
|
|
|
|
|
if isinstance(activation, str): |
|
activation = _get_activation_fn(activation) |
|
|
|
|
|
|
|
if activation is F.relu or isinstance(activation, torch.nn.ReLU): |
|
self.activation_relu_or_gelu = 1 |
|
elif activation is F.gelu or isinstance(activation, torch.nn.GELU): |
|
self.activation_relu_or_gelu = 2 |
|
else: |
|
self.activation_relu_or_gelu = 0 |
|
self.activation = activation |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
if not hasattr(self, 'activation'): |
|
self.activation = F.relu |
|
|
|
|
|
def forward( |
|
self, |
|
src: Tensor, |
|
src_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
is_causal: bool = False) -> Tensor: |
|
r"""Pass the input through the encoder layer. |
|
|
|
Args: |
|
src: the sequence to the encoder layer (required). |
|
src_mask: the mask for the src sequence (optional). |
|
src_key_padding_mask: the mask for the src keys per batch (optional). |
|
is_causal: If specified, applies a causal mask as ``src mask``. |
|
Default: ``False``. |
|
Warning: |
|
``is_causal`` provides a hint that ``src_mask`` is the |
|
causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
|
|
Shape: |
|
see the docs in :class:`~torch.nn.Transformer`. |
|
""" |
|
src_key_padding_mask = F._canonical_mask( |
|
mask=src_key_padding_mask, |
|
mask_name="src_key_padding_mask", |
|
other_type=F._none_or_dtype(src_mask), |
|
other_name="src_mask", |
|
target_type=src.dtype |
|
) |
|
|
|
src_mask = F._canonical_mask( |
|
mask=src_mask, |
|
mask_name="src_mask", |
|
other_type=None, |
|
other_name="", |
|
target_type=src.dtype, |
|
check_other=False, |
|
) |
|
|
|
is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled() |
|
|
|
why_not_sparsity_fast_path = '' |
|
if not is_fastpath_enabled: |
|
why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True" |
|
elif not src.dim() == 3: |
|
why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}" |
|
elif self.training: |
|
why_not_sparsity_fast_path = "training is enabled" |
|
elif not self.self_attn.batch_first: |
|
why_not_sparsity_fast_path = "self_attn.batch_first was not True" |
|
elif self.self_attn.in_proj_bias is None: |
|
why_not_sparsity_fast_path = "self_attn was passed bias=False" |
|
elif not self.self_attn._qkv_same_embed_dim: |
|
why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True" |
|
elif not self.activation_relu_or_gelu: |
|
why_not_sparsity_fast_path = "activation_relu_or_gelu was not True" |
|
elif not (self.norm1.eps == self.norm2.eps): |
|
why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps" |
|
elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None): |
|
why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input" |
|
elif self.self_attn.num_heads % 2 == 1: |
|
why_not_sparsity_fast_path = "num_head is odd" |
|
elif torch.is_autocast_enabled(): |
|
why_not_sparsity_fast_path = "autocast is enabled" |
|
if not why_not_sparsity_fast_path: |
|
tensor_args = ( |
|
src, |
|
self.self_attn.in_proj_weight, |
|
self.self_attn.in_proj_bias, |
|
self.self_attn.out_proj.weight, |
|
self.self_attn.out_proj.bias, |
|
self.norm1.weight, |
|
self.norm1.bias, |
|
self.norm2.weight, |
|
self.norm2.bias, |
|
self.linear1.weight, |
|
self.linear1.bias, |
|
self.linear2.weight, |
|
self.linear2.bias, |
|
) |
|
|
|
|
|
|
|
_supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name] |
|
if torch.overrides.has_torch_function(tensor_args): |
|
why_not_sparsity_fast_path = "some Tensor argument has_torch_function" |
|
elif not all((x.device.type in _supported_device_type) for x in tensor_args): |
|
why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of " |
|
f"{_supported_device_type}") |
|
elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args): |
|
why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the " |
|
"input/output projection weights or biases requires_grad") |
|
|
|
if not why_not_sparsity_fast_path: |
|
merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src) |
|
return torch._transformer_encoder_layer_fwd( |
|
src, |
|
self.self_attn.embed_dim, |
|
self.self_attn.num_heads, |
|
self.self_attn.in_proj_weight, |
|
self.self_attn.in_proj_bias, |
|
self.self_attn.out_proj.weight, |
|
self.self_attn.out_proj.bias, |
|
self.activation_relu_or_gelu == 2, |
|
self.norm_first, |
|
self.norm1.eps, |
|
self.norm1.weight, |
|
self.norm1.bias, |
|
self.norm2.weight, |
|
self.norm2.bias, |
|
self.linear1.weight, |
|
self.linear1.bias, |
|
self.linear2.weight, |
|
self.linear2.bias, |
|
merged_mask, |
|
mask_type, |
|
) |
|
|
|
|
|
x = src |
|
if self.norm_first: |
|
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal) |
|
x = x + self._ff_block(self.norm2(x)) |
|
else: |
|
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal)) |
|
x = self.norm2(x + self._ff_block(x)) |
|
|
|
return x |
|
|
|
|
|
def _sa_block(self, x: Tensor, |
|
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor: |
|
x = self.self_attn(x, x, x, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=False, is_causal=is_causal)[0] |
|
return self.dropout1(x) |
|
|
|
|
|
def _ff_block(self, x: Tensor) -> Tensor: |
|
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) |
|
return self.dropout2(x) |
|
|
|
|
|
class TransformerDecoderLayer(Module): |
|
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. |
|
|
|
This standard decoder layer is based on the paper "Attention Is All You Need". |
|
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, |
|
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in |
|
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement |
|
in a different way during application. |
|
|
|
Args: |
|
d_model: the number of expected features in the input (required). |
|
nhead: the number of heads in the multiheadattention models (required). |
|
dim_feedforward: the dimension of the feedforward network model (default=2048). |
|
dropout: the dropout value (default=0.1). |
|
activation: the activation function of the intermediate layer, can be a string |
|
("relu" or "gelu") or a unary callable. Default: relu |
|
layer_norm_eps: the eps value in layer normalization components (default=1e-5). |
|
batch_first: If ``True``, then the input and output tensors are provided |
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). |
|
norm_first: if ``True``, layer norm is done prior to self attention, multihead |
|
attention and feedforward operations, respectively. Otherwise it's done after. |
|
Default: ``False`` (after). |
|
bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive |
|
bias. Default: ``True``. |
|
|
|
Examples:: |
|
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) |
|
>>> memory = torch.rand(10, 32, 512) |
|
>>> tgt = torch.rand(20, 32, 512) |
|
>>> out = decoder_layer(tgt, memory) |
|
|
|
Alternatively, when ``batch_first`` is ``True``: |
|
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True) |
|
>>> memory = torch.rand(32, 10, 512) |
|
>>> tgt = torch.rand(32, 20, 512) |
|
>>> out = decoder_layer(tgt, memory) |
|
""" |
|
|
|
__constants__ = ['norm_first'] |
|
|
|
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, |
|
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, |
|
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, |
|
bias: bool = True, device=None, dtype=None) -> None: |
|
factory_kwargs = {'device': device, 'dtype': dtype} |
|
super().__init__() |
|
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, |
|
bias=bias, **factory_kwargs) |
|
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first, |
|
bias=bias, **factory_kwargs) |
|
|
|
self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs) |
|
self.dropout = Dropout(dropout) |
|
self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs) |
|
|
|
self.norm_first = norm_first |
|
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs) |
|
self.dropout1 = Dropout(dropout) |
|
self.dropout2 = Dropout(dropout) |
|
self.dropout3 = Dropout(dropout) |
|
|
|
|
|
if isinstance(activation, str): |
|
self.activation = _get_activation_fn(activation) |
|
else: |
|
self.activation = activation |
|
|
|
def __setstate__(self, state): |
|
if 'activation' not in state: |
|
state['activation'] = F.relu |
|
super().__setstate__(state) |
|
|
|
def forward( |
|
self, |
|
tgt: Tensor, |
|
memory: Tensor, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
tgt_is_causal: bool = False, |
|
memory_is_causal: bool = False, |
|
) -> Tensor: |
|
r"""Pass the inputs (and mask) through the decoder layer. |
|
|
|
Args: |
|
tgt: the sequence to the decoder layer (required). |
|
memory: the sequence from the last layer of the encoder (required). |
|
tgt_mask: the mask for the tgt sequence (optional). |
|
memory_mask: the mask for the memory sequence (optional). |
|
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). |
|
memory_key_padding_mask: the mask for the memory keys per batch (optional). |
|
tgt_is_causal: If specified, applies a causal mask as ``tgt mask``. |
|
Default: ``False``. |
|
Warning: |
|
``tgt_is_causal`` provides a hint that ``tgt_mask`` is |
|
the causal mask. Providing incorrect hints can result in |
|
incorrect execution, including forward and backward |
|
compatibility. |
|
memory_is_causal: If specified, applies a causal mask as |
|
``memory mask``. |
|
Default: ``False``. |
|
Warning: |
|
``memory_is_causal`` provides a hint that |
|
``memory_mask`` is the causal mask. Providing incorrect |
|
hints can result in incorrect execution, including |
|
forward and backward compatibility. |
|
|
|
Shape: |
|
see the docs in :class:`~torch.nn.Transformer`. |
|
""" |
|
|
|
|
|
x = tgt |
|
if self.norm_first: |
|
x = x + self._sa_block(self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal) |
|
x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal) |
|
x = x + self._ff_block(self.norm3(x)) |
|
else: |
|
x = self.norm1(x + self._sa_block(x, tgt_mask, tgt_key_padding_mask, tgt_is_causal)) |
|
x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal)) |
|
x = self.norm3(x + self._ff_block(x)) |
|
|
|
return x |
|
|
|
|
|
def _sa_block(self, x: Tensor, |
|
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor: |
|
x = self.self_attn(x, x, x, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
need_weights=False)[0] |
|
return self.dropout1(x) |
|
|
|
|
|
def _mha_block(self, x: Tensor, mem: Tensor, |
|
attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor: |
|
x = self.multihead_attn(x, mem, mem, |
|
attn_mask=attn_mask, |
|
key_padding_mask=key_padding_mask, |
|
is_causal=is_causal, |
|
need_weights=False)[0] |
|
return self.dropout2(x) |
|
|
|
|
|
def _ff_block(self, x: Tensor) -> Tensor: |
|
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) |
|
return self.dropout3(x) |
|
|
|
|
|
def _get_clones(module, N): |
|
|
|
return ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: |
|
if activation == "relu": |
|
return F.relu |
|
elif activation == "gelu": |
|
return F.gelu |
|
|
|
raise RuntimeError(f"activation should be relu/gelu, not {activation}") |
|
|
|
|
|
def _detect_is_causal_mask( |
|
mask: Optional[Tensor], |
|
is_causal: Optional[bool] = None, |
|
size: Optional[int] = None, |
|
) -> bool: |
|
"""Return whether the given attention mask is causal. |
|
|
|
Warning: |
|
If ``is_causal`` is not ``None``, its value will be returned as is. If a |
|
user supplies an incorrect ``is_causal`` hint, |
|
|
|
``is_causal=False`` when the mask is in fact a causal attention.mask |
|
may lead to reduced performance relative to what would be achievable |
|
with ``is_causal=True``; |
|
``is_causal=True`` when the mask is in fact not a causal attention.mask |
|
may lead to incorrect and unpredictable execution - in some scenarios, |
|
a causal mask may be applied based on the hint, in other execution |
|
scenarios the specified mask may be used. The choice may not appear |
|
to be deterministic, in that a number of factors like alignment, |
|
hardware SKU, etc influence the decision whether to use a mask or |
|
rely on the hint. |
|
``size`` if not None, check whether the mask is a causal mask of the provided size |
|
Otherwise, checks for any causal mask. |
|
""" |
|
|
|
make_causal = (is_causal is True) |
|
|
|
if is_causal is None and mask is not None: |
|
sz = size if size is not None else mask.size(-2) |
|
causal_comparison = _generate_square_subsequent_mask( |
|
sz, device=mask.device, dtype=mask.dtype) |
|
|
|
|
|
|
|
if mask.size() == causal_comparison.size(): |
|
make_causal = bool((mask == causal_comparison).all()) |
|
else: |
|
make_causal = False |
|
|
|
return make_causal |
|
|