|
|
|
import functools |
|
from typing import Union, Iterable, List, Dict, Tuple, Optional, cast |
|
from typing_extensions import deprecated |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype, _has_foreach_support, _device_has_foreach_support |
|
|
|
_tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] |
|
|
|
__all__ = ['clip_grad_norm_', 'clip_grad_norm', 'clip_grad_value_'] |
|
|
|
def _no_grad(func): |
|
""" |
|
This wrapper is needed to avoid a circular import when using @torch.no_grad on the exposed functions |
|
clip_grad_norm_ and clip_grad_value_ themselves. |
|
""" |
|
def _no_grad_wrapper(*args, **kwargs): |
|
with torch.no_grad(): |
|
return func(*args, **kwargs) |
|
functools.update_wrapper(_no_grad_wrapper, func) |
|
return _no_grad_wrapper |
|
|
|
@_no_grad |
|
def clip_grad_norm_( |
|
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0, |
|
error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor: |
|
r"""Clip the gradient norm of an iterable of parameters. |
|
|
|
The norm is computed over all gradients together, as if they were |
|
concatenated into a single vector. Gradients are modified in-place. |
|
|
|
Args: |
|
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
|
single Tensor that will have gradients normalized |
|
max_norm (float): max norm of the gradients |
|
norm_type (float): type of the used p-norm. Can be ``'inf'`` for |
|
infinity norm. |
|
error_if_nonfinite (bool): if True, an error is thrown if the total |
|
norm of the gradients from :attr:`parameters` is ``nan``, |
|
``inf``, or ``-inf``. Default: False (will switch to True in the future) |
|
foreach (bool): use the faster foreach-based implementation. |
|
If ``None``, use the foreach implementation for CUDA and CPU native tensors and silently |
|
fall back to the slow implementation for other device types. |
|
Default: ``None`` |
|
|
|
Returns: |
|
Total norm of the parameter gradients (viewed as a single vector). |
|
""" |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
grads = [p.grad for p in parameters if p.grad is not None] |
|
max_norm = float(max_norm) |
|
norm_type = float(norm_type) |
|
if len(grads) == 0: |
|
return torch.tensor(0.) |
|
first_device = grads[0].device |
|
grouped_grads: Dict[Tuple[torch.device, torch.dtype], Tuple[List[List[Tensor]], List[int]]] \ |
|
= _group_tensors_by_device_and_dtype([grads]) |
|
|
|
norms: List[Tensor] = [] |
|
for ((device, _), ([device_grads], _)) in grouped_grads.items(): |
|
if ( |
|
(foreach is None and _has_foreach_support(device_grads, device)) |
|
or (foreach and _device_has_foreach_support(device)) |
|
): |
|
norms.extend(torch._foreach_norm(device_grads, norm_type)) |
|
elif foreach: |
|
raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
|
else: |
|
norms.extend([torch.linalg.vector_norm(g, norm_type) for g in device_grads]) |
|
|
|
total_norm = torch.linalg.vector_norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type) |
|
|
|
if error_if_nonfinite and torch.logical_or(total_norm.isnan(), total_norm.isinf()): |
|
raise RuntimeError( |
|
f'The total norm of order {norm_type} for gradients from ' |
|
'`parameters` is non-finite, so it cannot be clipped. To disable ' |
|
'this error and scale the gradients by the non-finite norm anyway, ' |
|
'set `error_if_nonfinite=False`') |
|
clip_coef = max_norm / (total_norm + 1e-6) |
|
|
|
|
|
|
|
clip_coef_clamped = torch.clamp(clip_coef, max=1.0) |
|
for ((device, _), ([device_grads], _)) in grouped_grads.items(): |
|
if ( |
|
(foreach is None and _has_foreach_support(device_grads, device)) |
|
or (foreach and _device_has_foreach_support(device)) |
|
): |
|
torch._foreach_mul_(device_grads, clip_coef_clamped.to(device)) |
|
elif foreach: |
|
raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
|
else: |
|
clip_coef_clamped_device = clip_coef_clamped.to(device) |
|
for g in device_grads: |
|
g.mul_(clip_coef_clamped_device) |
|
|
|
return total_norm |
|
|
|
|
|
@deprecated( |
|
"`torch.nn.utils.clip_grad_norm` is now deprecated " |
|
"in favor of `torch.nn.utils.clip_grad_norm_`.", |
|
category=FutureWarning, |
|
) |
|
def clip_grad_norm( |
|
parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2., |
|
error_if_nonfinite: bool = False, foreach: Optional[bool] = None) -> torch.Tensor: |
|
r"""Clip the gradient norm of an iterable of parameters. |
|
|
|
.. warning:: |
|
This method is now deprecated in favor of |
|
:func:`torch.nn.utils.clip_grad_norm_`. |
|
""" |
|
return clip_grad_norm_(parameters, max_norm, norm_type, error_if_nonfinite, foreach) |
|
|
|
|
|
@_no_grad |
|
def clip_grad_value_(parameters: _tensor_or_tensors, clip_value: float, foreach: Optional[bool] = None) -> None: |
|
r"""Clip the gradients of an iterable of parameters at specified value. |
|
|
|
Gradients are modified in-place. |
|
|
|
Args: |
|
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
|
single Tensor that will have gradients normalized |
|
clip_value (float): maximum allowed value of the gradients. |
|
The gradients are clipped in the range |
|
:math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` |
|
foreach (bool): use the faster foreach-based implementation |
|
If ``None``, use the foreach implementation for CUDA and CPU native tensors and |
|
silently fall back to the slow implementation for other device types. |
|
Default: ``None`` |
|
""" |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
clip_value = float(clip_value) |
|
|
|
grads = [p.grad for p in parameters if p.grad is not None] |
|
grouped_grads = _group_tensors_by_device_and_dtype([grads]) |
|
|
|
for ((device, _), ([grads], _)) in grouped_grads.items(): |
|
if ( |
|
(foreach is None and _has_foreach_support(cast(List[Tensor], grads), device=device)) |
|
or (foreach and _device_has_foreach_support(device)) |
|
): |
|
torch._foreach_clamp_min_(cast(List[Tensor], grads), -clip_value) |
|
torch._foreach_clamp_max_(cast(List[Tensor], grads), clip_value) |
|
elif foreach: |
|
raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors') |
|
else: |
|
for grad in grads: |
|
cast(Tensor, grad).clamp_(min=-clip_value, max=clip_value) |
|
|