|
|
|
import difflib |
|
import functools |
|
import os |
|
import io |
|
import re |
|
import shutil |
|
import struct |
|
import sys |
|
import torch |
|
import tarfile |
|
import tempfile |
|
import warnings |
|
from contextlib import closing, contextmanager |
|
from enum import Enum |
|
from ._utils import _import_dotted_name |
|
from torch._sources import get_source_lines_and_file |
|
from torch.types import Storage |
|
from torch.storage import _get_dtype_from_pickle_storage_type |
|
from typing import Any, BinaryIO, Callable, cast, Dict, Optional, Type, Tuple, Union, IO, List |
|
from typing_extensions import TypeAlias, TypeGuard |
|
import copyreg |
|
import pickle |
|
import torch._weights_only_unpickler as _weights_only_unpickler |
|
|
|
DEFAULT_PROTOCOL = 2 |
|
|
|
LONG_SIZE = struct.Struct('=l').size |
|
INT_SIZE = struct.Struct('=i').size |
|
SHORT_SIZE = struct.Struct('=h').size |
|
|
|
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c |
|
PROTOCOL_VERSION = 1001 |
|
STORAGE_KEY_SEPARATOR = ',' |
|
|
|
FILE_LIKE: TypeAlias = Union[str, os.PathLike, BinaryIO, IO[bytes]] |
|
MAP_LOCATION: TypeAlias = Optional[Union[Callable[[Storage, str], Storage], torch.device, str, Dict[str, str]]] |
|
STORAGE: TypeAlias = Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage] |
|
|
|
IS_WINDOWS = sys.platform == "win32" |
|
|
|
if not IS_WINDOWS: |
|
from mmap import MAP_SHARED, MAP_PRIVATE |
|
else: |
|
MAP_SHARED, MAP_PRIVATE = None, None |
|
|
|
__all__ = [ |
|
'SourceChangeWarning', |
|
'mkdtemp', |
|
'register_package', |
|
'check_module_version_greater_or_equal', |
|
'validate_cuda_device', |
|
'validate_hpu_device', |
|
'location_tag', |
|
'default_restore_location', |
|
'normalize_storage_type', |
|
'storage_to_tensor_type', |
|
'save', |
|
'load', |
|
'StorageType', |
|
'LoadEndianness', |
|
'get_default_load_endianness', |
|
'set_default_load_endianness', |
|
'clear_safe_globals', |
|
'get_safe_globals', |
|
'add_safe_globals', |
|
] |
|
|
|
|
|
class SourceChangeWarning(Warning): |
|
pass |
|
|
|
|
|
@contextmanager |
|
def mkdtemp(): |
|
path = tempfile.mkdtemp() |
|
try: |
|
yield path |
|
finally: |
|
shutil.rmtree(path) |
|
|
|
|
|
_package_registry: List[Tuple[int, Callable[[STORAGE], Optional[str]], Callable[[STORAGE, str], Optional[STORAGE]]]] = [] |
|
|
|
class LoadEndianness(Enum): |
|
NATIVE = 1 |
|
LITTLE = 2 |
|
BIG = 3 |
|
|
|
_default_load_endian: Optional[LoadEndianness] = None |
|
|
|
def get_default_load_endianness() -> Optional[LoadEndianness]: |
|
''' |
|
Get fallback byte order for loading files |
|
|
|
If byteorder mark is not present in saved checkpoint, |
|
this byte order is used as fallback. |
|
By default, it's "native" byte order. |
|
|
|
Returns: |
|
default_load_endian: Optional[LoadEndianness] |
|
''' |
|
return _default_load_endian |
|
|
|
def set_default_load_endianness(endianness): |
|
''' |
|
Set fallback byte order for loading files |
|
|
|
If byteorder mark is not present in saved checkpoint, |
|
this byte order is used as fallback. |
|
By default, it's "native" byte order. |
|
|
|
Args: |
|
endianness: the new fallback byte order |
|
''' |
|
global _default_load_endian |
|
if not isinstance(endianness, LoadEndianness) and endianness is not None: |
|
raise TypeError("Invalid argument type in function set_default_load_endianness") |
|
_default_load_endian = endianness |
|
|
|
_default_mmap_options: int = MAP_PRIVATE |
|
|
|
def get_default_mmap_options() -> int: |
|
''' |
|
Get default mmap options for :func:`torch.load` with ``mmap=True``. |
|
|
|
Defaults to ``mmap.MAP_PRIVATE``. |
|
|
|
|
|
Returns: |
|
default_mmap_options: int |
|
''' |
|
return _default_mmap_options |
|
|
|
def set_default_mmap_options(flags: int): |
|
''' |
|
Set default mmap options for :func:`torch.load` with ``mmap=True`` to flags. |
|
|
|
For now, only either ``mmap.MAP_PRIVATE`` or ``mmap.MAP_SHARED`` are supported. |
|
Please open an issue if you need any other option to be added here. |
|
|
|
.. note:: |
|
This feature is currently not supported for Windows. |
|
|
|
Args: |
|
flags: ``mmap.MAP_PRIVATE`` or ``mmap.MAP_SHARED`` |
|
''' |
|
global _default_mmap_options |
|
if IS_WINDOWS: |
|
raise RuntimeError("Changing the default mmap options is currently not supported for Windows") |
|
if (flags != MAP_PRIVATE and flags != MAP_SHARED): |
|
raise ValueError("Invalid argument in function set_default_mmap_options, " |
|
f"expected mmap.MAP_PRIVATE or mmap.MAP_SHARED, but got {flags}") |
|
_default_mmap_options = flags |
|
|
|
def clear_safe_globals() -> None: |
|
''' |
|
Clears the list of globals that are safe for ``weights_only`` load. |
|
''' |
|
_weights_only_unpickler._clear_safe_globals() |
|
|
|
def get_safe_globals() -> List[Any]: |
|
''' |
|
Returns the list of user-added globals that are safe for ``weights_only`` load. |
|
''' |
|
return _weights_only_unpickler._get_safe_globals() |
|
|
|
def add_safe_globals(safe_globals: List[Any]) -> None: |
|
''' |
|
Marks the given globals as safe for ``weights_only`` load. For example, functions |
|
added to this list can be called during unpickling, classes could be instantiated |
|
and have state set. |
|
|
|
Args: |
|
safe_globals (List[Any]): list of globals to mark as safe |
|
|
|
Example: |
|
>>> # xdoctest: +SKIP("Can't torch.save(t, ...) as doctest thinks MyTensor is defined on torch.serialization") |
|
>>> import tempfile |
|
>>> class MyTensor(torch.Tensor): |
|
... pass |
|
>>> t = MyTensor(torch.randn(2, 3)) |
|
>>> with tempfile.NamedTemporaryFile() as f: |
|
... torch.save(t, f.name) |
|
# Running `torch.load(f.name, weights_only=True)` will fail with |
|
# Unsupported global: GLOBAL __main__.MyTensor was not an allowed global by default. |
|
# Check the code and make sure MyTensor is safe to be used when loaded from an arbitrary checkpoint. |
|
... torch.serialization.add_safe_globals([MyTensor]) |
|
... torch.load(f.name, weights_only=True) |
|
# MyTensor([[-0.5024, -1.8152, -0.5455], |
|
# [-0.8234, 2.0500, -0.3657]]) |
|
''' |
|
_weights_only_unpickler._add_safe_globals(safe_globals) |
|
|
|
def _is_zipfile(f) -> bool: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = f.tell() |
|
|
|
local_header_magic_number = b'PK\x03\x04' |
|
read_bytes = f.read(len(local_header_magic_number)) |
|
f.seek(start) |
|
return read_bytes == local_header_magic_number |
|
|
|
|
|
def register_package( |
|
priority: int, |
|
tagger: Callable[[STORAGE], Optional[str]], |
|
deserializer: Callable[[STORAGE, str], Optional[STORAGE]] |
|
): |
|
''' |
|
Registers callables for tagging and deserializing storage objects with an associated priority. |
|
Tagging associates a device with a storage object at save time while deserializing moves a |
|
storage object to an appropriate device at load time. :attr:`tagger` and :attr:`deserializer` |
|
are run in the order given by their :attr:`priority` until a tagger/deserializer returns a |
|
value that is not `None`. |
|
|
|
To override the deserialization behavior for a device in the global registry, one can register a |
|
tagger with a higher priority than the existing tagger. |
|
|
|
This function can also be used to register a tagger and deserializer for new devices. |
|
|
|
Args: |
|
priority: Indicates the priority associated with the tagger and deserializer, where a lower |
|
value indicates higher priority. |
|
tagger: Callable that takes in a storage object and returns its tagged device as a string |
|
or None. |
|
deserializer: Callable that takes in storage object and a device string and returns a storage |
|
object on the appropriate device or None. |
|
|
|
Returns: |
|
`None` |
|
|
|
Example: |
|
>>> def ipu_tag(obj): |
|
>>> if obj.device.type == 'ipu': |
|
>>> return 'ipu' |
|
>>> def ipu_deserialize(obj, location): |
|
>>> if location.startswith('ipu'): |
|
>>> ipu = getattr(torch, "ipu", None) |
|
>>> assert ipu is not None, "IPU device module is not loaded" |
|
>>> assert torch.ipu.is_available(), "ipu is not available" |
|
>>> return obj.ipu(location) |
|
>>> torch.serialization.register_package(11, ipu_tag, ipu_deserialize) |
|
''' |
|
queue_elem = (priority, tagger, deserializer) |
|
_package_registry.append(queue_elem) |
|
_package_registry.sort() |
|
|
|
|
|
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True): |
|
''' |
|
Check if a module's version satisfies requirements |
|
|
|
Usually, a module's version string will be like 'x.y.z', which would be represented |
|
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version |
|
string does not match the given tuple's format up to the length of the tuple, then |
|
error and exit or emit a warning. |
|
|
|
Args: |
|
module: the module to check the version of |
|
req_version_tuple: tuple (usually of ints) representing the required version |
|
error_if_malformed: whether we should exit if module version string is malformed |
|
|
|
Returns: |
|
requirement_is_met: bool |
|
''' |
|
try: |
|
version_strs = module.__version__.split('.') |
|
|
|
module_version = tuple( |
|
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple) |
|
) |
|
requirement_is_met = module_version >= req_version_tuple |
|
|
|
except Exception as e: |
|
message = ( |
|
f"'{module.__name__}' module version string is malformed '{module.__version__}' and cannot be compared" |
|
f" with tuple {str(req_version_tuple)}" |
|
) |
|
if error_if_malformed: |
|
raise RuntimeError(message) from e |
|
else: |
|
warnings.warn(message + ', but continuing assuming that requirement is met') |
|
requirement_is_met = True |
|
|
|
return requirement_is_met |
|
|
|
|
|
def _cpu_tag(obj): |
|
if obj.device.type == 'cpu': |
|
return 'cpu' |
|
|
|
|
|
def _mps_tag(obj): |
|
if obj.device.type == 'mps': |
|
return 'mps' |
|
|
|
|
|
def _meta_tag(obj): |
|
if obj.device.type == 'meta': |
|
return 'meta' |
|
|
|
|
|
def _backend_tag(backend_name, obj): |
|
if backend_name == 'privateuse1': |
|
backend_name = torch._C._get_privateuse1_backend_name() |
|
if obj.device.type == backend_name: |
|
if obj.device.index is None: |
|
return backend_name |
|
else: |
|
return backend_name + ':' + str(obj.device.index) |
|
|
|
|
|
def _cpu_deserialize(obj, location): |
|
if location == 'cpu': |
|
return obj |
|
|
|
|
|
def _mps_deserialize(obj, location): |
|
if location.startswith('mps'): |
|
return obj.mps() |
|
|
|
|
|
def _meta_deserialize(obj, location): |
|
if location == 'meta': |
|
return torch.UntypedStorage(obj.nbytes(), device='meta') |
|
|
|
|
|
def _validate_device(location, backend_name): |
|
''' |
|
Check whether the device index of specified backend is valid |
|
|
|
In case of privateuse1 backend, your must first register a device_module for |
|
privateuse1 using torch._register_device_module. Implement the following |
|
methods in device_module like cuda: device_module._utils._get_device_index(location, True), |
|
device_module.device_count(). |
|
|
|
Args: |
|
location: string of device |
|
backend_name: the backend name or the name of privateuse1, which can be renamed |
|
|
|
Returns: |
|
device_index: int |
|
''' |
|
if not hasattr(torch, backend_name): |
|
raise RuntimeError(f'The {backend_name.upper()} device module is not registered. ' |
|
'If you are running on a CPU-only machine, ' |
|
'please use torch.load with map_location=torch.device(\'cpu\') ' |
|
'to map your storages to the CPU.') |
|
device_module = getattr(torch, backend_name) |
|
if hasattr(device_module, '_utils') and hasattr(device_module._utils, '_get_device_index'): |
|
device_index = device_module._utils._get_device_index(location, True) |
|
device = torch.device(backend_name, device_index) |
|
else: |
|
device = torch.device(location) |
|
device_index = device.index if device.index else 0 |
|
if hasattr(device_module, 'is_available') and not device_module.is_available(): |
|
raise RuntimeError(f'Attempting to deserialize object on a {backend_name.upper()} ' |
|
f'device but torch.{backend_name}.is_available() is False. ' |
|
'If you are running on a CPU-only machine, ' |
|
'please use torch.load with map_location=torch.device(\'cpu\') ' |
|
'to map your storages to the CPU.') |
|
if hasattr(device_module, 'device_count'): |
|
device_count = device_module.device_count() |
|
if device_index >= device_count: |
|
raise RuntimeError(f'Attempting to deserialize object on {backend_name.upper()} device ' |
|
f'{device_index} but torch.{backend_name}.device_count() is {device_count}. ' |
|
'Please use torch.load with map_location to map your storages ' |
|
'to an existing device.') |
|
return device |
|
|
|
|
|
def validate_cuda_device(location): |
|
return _validate_device(location, 'cuda').index |
|
|
|
|
|
def validate_hpu_device(location): |
|
return _validate_device(location, 'hpu').index |
|
|
|
|
|
def _deserialize(backend_name, obj, location): |
|
if backend_name == 'privateuse1': |
|
backend_name = torch._C._get_privateuse1_backend_name() |
|
if location.startswith(backend_name): |
|
device = _validate_device(location, backend_name) |
|
return obj.to(device=device) |
|
|
|
|
|
register_package(10, _cpu_tag, _cpu_deserialize) |
|
register_package(20, functools.partial(_backend_tag, 'cuda'), functools.partial(_deserialize, 'cuda')) |
|
register_package(21, _mps_tag, _mps_deserialize) |
|
register_package(22, _meta_tag, _meta_deserialize) |
|
register_package(23, functools.partial(_backend_tag, 'privateuse1'), functools.partial(_deserialize, 'privateuse1')) |
|
register_package(24, functools.partial(_backend_tag, 'hpu'), functools.partial(_deserialize, 'hpu')) |
|
register_package(25, functools.partial(_backend_tag, 'xpu'), functools.partial(_deserialize, 'xpu')) |
|
|
|
def location_tag(storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]): |
|
for _, tagger, _ in _package_registry: |
|
location = tagger(storage) |
|
if location: |
|
return location |
|
raise RuntimeError("don't know how to determine data location of " |
|
+ torch.typename(storage)) |
|
|
|
|
|
def default_restore_location(storage, location): |
|
for _, _, fn in _package_registry: |
|
result = fn(storage, location) |
|
if result is not None: |
|
return result |
|
raise RuntimeError("don't know how to restore data location of " |
|
+ torch.typename(storage) + " (tagged with " |
|
+ location + ")") |
|
|
|
|
|
def normalize_storage_type(storage_type): |
|
return getattr(torch, storage_type.__name__) |
|
|
|
|
|
def storage_to_tensor_type(storage): |
|
storage_type = type(storage) |
|
module = _import_dotted_name(storage_type.__module__) |
|
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor')) |
|
|
|
|
|
def _is_path(name_or_buffer) -> TypeGuard[Union[str, os.PathLike]]: |
|
return isinstance(name_or_buffer, (str, os.PathLike)) |
|
|
|
|
|
class _opener: |
|
def __init__(self, file_like): |
|
self.file_like = file_like |
|
|
|
def __enter__(self): |
|
return self.file_like |
|
|
|
def __exit__(self, *args): |
|
pass |
|
|
|
|
|
class _open_file(_opener): |
|
def __init__(self, name, mode): |
|
super().__init__(open(name, mode)) |
|
|
|
def __exit__(self, *args): |
|
self.file_like.close() |
|
|
|
|
|
class _open_buffer_reader(_opener): |
|
def __init__(self, buffer): |
|
super().__init__(buffer) |
|
_check_seekable(buffer) |
|
|
|
|
|
class _open_buffer_writer(_opener): |
|
def __exit__(self, *args): |
|
self.file_like.flush() |
|
|
|
|
|
def _open_file_like(name_or_buffer, mode): |
|
if _is_path(name_or_buffer): |
|
return _open_file(name_or_buffer, mode) |
|
else: |
|
if 'w' in mode: |
|
return _open_buffer_writer(name_or_buffer) |
|
elif 'r' in mode: |
|
return _open_buffer_reader(name_or_buffer) |
|
else: |
|
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}") |
|
|
|
|
|
class _open_zipfile_reader(_opener): |
|
def __init__(self, name_or_buffer) -> None: |
|
super().__init__(torch._C.PyTorchFileReader(name_or_buffer)) |
|
|
|
|
|
class _open_zipfile_writer_file(_opener): |
|
def __init__(self, name) -> None: |
|
self.file_stream = None |
|
self.name = str(name) |
|
try: |
|
self.name.encode('ascii') |
|
except UnicodeEncodeError: |
|
|
|
|
|
|
|
self.file_stream = io.FileIO(self.name, mode='w') |
|
super().__init__(torch._C.PyTorchFileWriter(self.file_stream)) |
|
else: |
|
super().__init__(torch._C.PyTorchFileWriter(self.name)) |
|
|
|
def __exit__(self, *args) -> None: |
|
self.file_like.write_end_of_file() |
|
if self.file_stream is not None: |
|
self.file_stream.close() |
|
|
|
|
|
class _open_zipfile_writer_buffer(_opener): |
|
def __init__(self, buffer) -> None: |
|
if not callable(getattr(buffer, "write", None)): |
|
msg = f"Buffer of {str(type(buffer)).strip('<>')} has no callable attribute 'write'" |
|
if not hasattr(buffer, "write"): |
|
raise AttributeError(msg) |
|
raise TypeError(msg) |
|
self.buffer = buffer |
|
super().__init__(torch._C.PyTorchFileWriter(buffer)) |
|
|
|
def __exit__(self, *args) -> None: |
|
self.file_like.write_end_of_file() |
|
self.buffer.flush() |
|
|
|
|
|
def _open_zipfile_writer(name_or_buffer): |
|
container: Type[_opener] |
|
if _is_path(name_or_buffer): |
|
container = _open_zipfile_writer_file |
|
else: |
|
container = _open_zipfile_writer_buffer |
|
return container(name_or_buffer) |
|
|
|
|
|
def _is_compressed_file(f) -> bool: |
|
compress_modules = ['gzip'] |
|
try: |
|
return f.__module__ in compress_modules |
|
except AttributeError: |
|
return False |
|
|
|
|
|
def _should_read_directly(f): |
|
""" |
|
Checks if f is a file that should be read directly. It should be read |
|
directly if it is backed by a real file (has a fileno) and is not a |
|
a compressed file (e.g. gzip) |
|
""" |
|
if _is_compressed_file(f): |
|
return False |
|
try: |
|
return f.fileno() >= 0 |
|
except io.UnsupportedOperation: |
|
return False |
|
except AttributeError: |
|
return False |
|
|
|
|
|
def _check_seekable(f) -> bool: |
|
|
|
def raise_err_msg(patterns, e): |
|
for p in patterns: |
|
if p in str(e): |
|
msg = (str(e) + ". You can only torch.load from a file that is seekable." |
|
+ " Please pre-load the data into a buffer like io.BytesIO and" |
|
+ " try to load from it instead.") |
|
raise type(e)(msg) |
|
raise e |
|
|
|
try: |
|
f.seek(f.tell()) |
|
return True |
|
except (io.UnsupportedOperation, AttributeError) as e: |
|
raise_err_msg(["seek", "tell"], e) |
|
return False |
|
|
|
|
|
def _check_dill_version(pickle_module) -> None: |
|
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version. |
|
If dill version is lower than 0.3.1, a ValueError is raised. |
|
|
|
Args: |
|
pickle_module: module used for pickling metadata and objects |
|
|
|
''' |
|
if pickle_module is not None and pickle_module.__name__ == 'dill': |
|
required_dill_version = (0, 3, 1) |
|
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False): |
|
raise ValueError(( |
|
"'torch' supports dill >= {}, but you have dill {}." |
|
" Please upgrade dill or switch to 'pickle'" |
|
).format( |
|
'.'.join([str(num) for num in required_dill_version]), |
|
pickle_module.__version__ |
|
)) |
|
|
|
|
|
def _check_save_filelike(f): |
|
if not _is_path(f) and not hasattr(f, 'write'): |
|
raise AttributeError( |
|
"expected 'f' to be string, path, or a file-like object with " |
|
"a 'write' attribute") |
|
|
|
|
|
def save( |
|
obj: object, |
|
f: FILE_LIKE, |
|
pickle_module: Any = pickle, |
|
pickle_protocol: int = DEFAULT_PROTOCOL, |
|
_use_new_zipfile_serialization: bool = True, |
|
_disable_byteorder_record: bool = False |
|
) -> None: |
|
|
|
|
|
|
|
|
|
|
|
"""save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True) |
|
|
|
Saves an object to a disk file. |
|
|
|
See also: :ref:`saving-loading-tensors` |
|
|
|
Args: |
|
obj: saved object |
|
f: a file-like object (has to implement write and flush) or a string or |
|
os.PathLike object containing a file name |
|
pickle_module: module used for pickling metadata and objects |
|
pickle_protocol: can be specified to override the default protocol |
|
|
|
.. note:: |
|
A common PyTorch convention is to save tensors using .pt file extension. |
|
|
|
.. note:: |
|
PyTorch preserves storage sharing across serialization. See |
|
:ref:`preserve-storage-sharing` for more details. |
|
|
|
.. note:: |
|
The 1.6 release of PyTorch switched ``torch.save`` to use a new |
|
zipfile-based file format. ``torch.load`` still retains the ability to |
|
load files in the old format. If for any reason you want ``torch.save`` |
|
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``. |
|
|
|
Example: |
|
>>> # xdoctest: +SKIP("makes cwd dirty") |
|
>>> # Save to file |
|
>>> x = torch.tensor([0, 1, 2, 3, 4]) |
|
>>> torch.save(x, 'tensor.pt') |
|
>>> # Save to io.BytesIO buffer |
|
>>> buffer = io.BytesIO() |
|
>>> torch.save(x, buffer) |
|
""" |
|
torch._C._log_api_usage_once("torch.save") |
|
_check_dill_version(pickle_module) |
|
_check_save_filelike(f) |
|
|
|
if _use_new_zipfile_serialization: |
|
with _open_zipfile_writer(f) as opened_zipfile: |
|
_save(obj, opened_zipfile, pickle_module, pickle_protocol, _disable_byteorder_record) |
|
return |
|
else: |
|
with _open_file_like(f, 'wb') as opened_file: |
|
_legacy_save(obj, opened_file, pickle_module, pickle_protocol) |
|
|
|
|
|
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None: |
|
import torch.nn as nn |
|
serialized_container_types = {} |
|
serialized_storages = {} |
|
|
|
|
|
|
|
|
|
|
|
storage_dtypes: Dict[int, torch.dtype] = {} |
|
|
|
def persistent_id(obj: Any) -> Optional[Tuple]: |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(obj, type) and issubclass(obj, nn.Module): |
|
if obj in serialized_container_types: |
|
return None |
|
serialized_container_types[obj] = True |
|
source_file = source = None |
|
try: |
|
source_lines, _, source_file = get_source_lines_and_file(obj) |
|
source = ''.join(source_lines) |
|
except Exception: |
|
warnings.warn("Couldn't retrieve source code for container of " |
|
"type " + obj.__name__ + ". It won't be checked " |
|
"for correctness upon loading.") |
|
return ('module', obj, source_file, source) |
|
|
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj): |
|
storage: torch.UntypedStorage |
|
|
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
|
|
storage = obj._untyped_storage |
|
storage_dtype = obj.dtype |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
dtype = obj.dtype |
|
storage_numel = obj._size() |
|
|
|
elif isinstance(obj, torch.UntypedStorage): |
|
storage = obj |
|
storage_dtype = torch.uint8 |
|
storage_type = normalize_storage_type(type(obj)) |
|
dtype = torch.uint8 |
|
storage_numel = storage.nbytes() |
|
else: |
|
raise TypeError(f'type not recognized: {type(obj)}') |
|
|
|
|
|
|
|
|
|
if storage.data_ptr() != 0: |
|
if storage.data_ptr() in storage_dtypes: |
|
if storage_dtype != storage_dtypes[storage.data_ptr()]: |
|
raise RuntimeError( |
|
'Cannot save multiple tensors or storages that ' |
|
'view the same data as different types') |
|
else: |
|
storage_dtypes[storage.data_ptr()] = storage_dtype |
|
|
|
view_metadata: Optional[Tuple[str, int, int]] |
|
|
|
|
|
|
|
offset = 0 |
|
storage_key = str(storage._cdata) |
|
location = location_tag(storage) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if storage_key not in serialized_storages: |
|
serialized_storages[storage_key] = (storage, dtype) |
|
is_view = storage._cdata != storage._cdata |
|
if is_view: |
|
view_metadata = (str(storage._cdata), offset, storage.nbytes()) |
|
else: |
|
view_metadata = None |
|
|
|
res = ('storage', |
|
storage_type, |
|
storage_key, |
|
location, |
|
storage_numel, |
|
view_metadata) |
|
return res |
|
return None |
|
|
|
sys_info = dict( |
|
protocol_version=PROTOCOL_VERSION, |
|
little_endian=sys.byteorder == 'little', |
|
type_sizes=dict( |
|
short=SHORT_SIZE, |
|
int=INT_SIZE, |
|
long=LONG_SIZE, |
|
), |
|
) |
|
|
|
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol) |
|
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol) |
|
pickle_module.dump(sys_info, f, protocol=pickle_protocol) |
|
pickler = pickle_module.Pickler(f, protocol=pickle_protocol) |
|
pickler.persistent_id = persistent_id |
|
pickler.dump(obj) |
|
|
|
serialized_storage_keys = sorted(serialized_storages.keys()) |
|
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol) |
|
f.flush() |
|
for key in serialized_storage_keys: |
|
storage, dtype = serialized_storages[key] |
|
storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype)) |
|
|
|
|
|
def _save(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record): |
|
serialized_storages = {} |
|
id_map: Dict[int, str] = {} |
|
|
|
|
|
|
|
|
|
|
|
storage_dtypes: Dict[int, torch.dtype] = {} |
|
|
|
def persistent_id(obj): |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj): |
|
|
|
if isinstance(obj, torch.storage.TypedStorage): |
|
|
|
|
|
storage = obj._untyped_storage |
|
storage_dtype = obj.dtype |
|
storage_type_str = obj._pickle_storage_type() |
|
storage_type = getattr(torch, storage_type_str) |
|
storage_numel = obj._size() |
|
|
|
else: |
|
storage = obj |
|
storage_dtype = torch.uint8 |
|
storage_type = normalize_storage_type(type(obj)) |
|
storage_numel = storage.nbytes() |
|
|
|
|
|
|
|
|
|
if storage.data_ptr() != 0: |
|
if storage.data_ptr() in storage_dtypes: |
|
if storage_dtype != storage_dtypes[storage.data_ptr()]: |
|
raise RuntimeError( |
|
'Cannot save multiple tensors or storages that ' |
|
'view the same data as different types') |
|
else: |
|
storage_dtypes[storage.data_ptr()] = storage_dtype |
|
|
|
storage_key = id_map.setdefault(storage._cdata, str(len(id_map))) |
|
location = location_tag(storage) |
|
serialized_storages[storage_key] = storage |
|
|
|
return ('storage', |
|
storage_type, |
|
storage_key, |
|
location, |
|
storage_numel) |
|
|
|
return None |
|
|
|
|
|
data_buf = io.BytesIO() |
|
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol) |
|
pickler.persistent_id = persistent_id |
|
pickler.dump(obj) |
|
data_value = data_buf.getvalue() |
|
zip_file.write_record('data.pkl', data_value, len(data_value)) |
|
|
|
|
|
if not _disable_byteorder_record: |
|
if sys.byteorder not in ['little', 'big']: |
|
raise ValueError('Unknown endianness type: ' + sys.byteorder) |
|
|
|
zip_file.write_record('byteorder', sys.byteorder, len(sys.byteorder)) |
|
|
|
|
|
for key in sorted(serialized_storages.keys()): |
|
name = f'data/{key}' |
|
storage = serialized_storages[key] |
|
|
|
|
|
|
|
if storage.device.type != 'cpu': |
|
storage = storage.cpu() |
|
|
|
num_bytes = storage.nbytes() |
|
zip_file.write_record(name, storage, num_bytes) |
|
|
|
|
|
def load( |
|
f: FILE_LIKE, |
|
map_location: MAP_LOCATION = None, |
|
pickle_module: Any = None, |
|
*, |
|
weights_only: Optional[bool] = None, |
|
mmap: Optional[bool] = None, |
|
**pickle_load_args: Any |
|
) -> Any: |
|
|
|
|
|
|
|
|
|
|
|
"""load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args) |
|
|
|
Loads an object saved with :func:`torch.save` from a file. |
|
|
|
:func:`torch.load` uses Python's unpickling facilities but treats storages, |
|
which underlie tensors, specially. They are first deserialized on the |
|
CPU and are then moved to the device they were saved from. If this fails |
|
(e.g. because the run time system doesn't have certain devices), an exception |
|
is raised. However, storages can be dynamically remapped to an alternative |
|
set of devices using the :attr:`map_location` argument. |
|
|
|
If :attr:`map_location` is a callable, it will be called once for each serialized |
|
storage with two arguments: storage and location. The storage argument |
|
will be the initial deserialization of the storage, residing on the CPU. |
|
Each serialized storage has a location tag associated with it which |
|
identifies the device it was saved from, and this tag is the second |
|
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'`` |
|
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors. |
|
:attr:`map_location` should return either ``None`` or a storage. If |
|
:attr:`map_location` returns a storage, it will be used as the final deserialized |
|
object, already moved to the right device. Otherwise, :func:`torch.load` will |
|
fall back to the default behavior, as if :attr:`map_location` wasn't specified. |
|
|
|
If :attr:`map_location` is a :class:`torch.device` object or a string containing |
|
a device tag, it indicates the location where all tensors should be loaded. |
|
|
|
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags |
|
appearing in the file (keys), to ones that specify where to put the |
|
storages (values). |
|
|
|
User extensions can register their own location tags and tagging and |
|
deserialization methods using :func:`torch.serialization.register_package`. |
|
|
|
Args: |
|
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`), |
|
or a string or os.PathLike object containing a file name |
|
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage |
|
locations |
|
pickle_module: module used for unpickling metadata and objects (has to |
|
match the :attr:`pickle_module` used to serialize file) |
|
weights_only: Indicates whether unpickler should be restricted to |
|
loading only tensors, primitive types, dictionaries |
|
and any types added via :func:`torch.serialization.add_safe_globals`. |
|
mmap: Indicates whether the file should be mmaped rather than loading all the storages into memory. |
|
Typically, tensor storages in the file will first be moved from disk to CPU memory, after which they |
|
are moved to the location that they were tagged with when saving, or specified by ``map_location``. This |
|
second step is a no-op if the final location is CPU. When the ``mmap`` flag is set, instead of copying the |
|
tensor storages from disk to CPU memory in the first step, ``f`` is mmaped. |
|
pickle_load_args: (Python 3 only) optional keyword arguments passed over to |
|
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g., |
|
:attr:`errors=...`. |
|
|
|
.. warning:: |
|
:func:`torch.load()` unless `weights_only` parameter is set to `True`, |
|
uses ``pickle`` module implicitly, which is known to be insecure. |
|
It is possible to construct malicious pickle data which will execute arbitrary code |
|
during unpickling. Never load data that could have come from an untrusted |
|
source in an unsafe mode, or that could have been tampered with. **Only load data you trust**. |
|
|
|
.. note:: |
|
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors |
|
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')`` |
|
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint. |
|
|
|
.. note:: |
|
By default, we decode byte strings as ``utf-8``. This is to avoid a common error |
|
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...`` |
|
when loading files saved by Python 2 in Python 3. If this default |
|
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how |
|
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them |
|
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them |
|
as byte arrays which can be decoded later with ``byte_array.decode(...)``. |
|
|
|
Example: |
|
>>> # xdoctest: +SKIP("undefined filepaths") |
|
>>> torch.load('tensors.pt', weights_only=True) |
|
# Load all tensors onto the CPU |
|
>>> torch.load('tensors.pt', map_location=torch.device('cpu'), weights_only=True) |
|
# Load all tensors onto the CPU, using a function |
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage, weights_only=True) |
|
# Load all tensors onto GPU 1 |
|
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1), weights_only=True) |
|
# Map tensors from GPU 1 to GPU 0 |
|
>>> torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'}, weights_only=True) |
|
# Load tensor from io.BytesIO object |
|
# Loading from a buffer setting weights_only=False, warning this can be unsafe |
|
>>> with open('tensor.pt', 'rb') as f: |
|
... buffer = io.BytesIO(f.read()) |
|
>>> torch.load(buffer, weights_only=False) |
|
# Load a module with 'ascii' encoding for unpickling |
|
# Loading from a module setting weights_only=False, warning this can be unsafe |
|
>>> torch.load('module.pt', encoding='ascii', weights_only=False) |
|
""" |
|
torch._C._log_api_usage_once("torch.load") |
|
UNSAFE_MESSAGE = ( |
|
"Re-running `torch.load` with `weights_only` set to `False` will likely succeed, " |
|
"but it can result in arbitrary code execution. Do it only if you got the file from a " |
|
"trusted source." |
|
) |
|
DOCS_MESSAGE = ( |
|
"\n\nCheck the documentation of torch.load to learn more about types accepted by default with " |
|
"weights_only https://pytorch.org/docs/stable/generated/torch.load.html." |
|
) |
|
|
|
def _get_wo_message(message: str) -> str: |
|
pattern = r"GLOBAL (\S+) was not an allowed global by default." |
|
has_unsafe_global = re.search(pattern, message) is not None |
|
if has_unsafe_global: |
|
updated_message = ( |
|
"Weights only load failed. This file can still be loaded, to do so you have two options " |
|
f"\n\t(1) {UNSAFE_MESSAGE}\n\t(2) Alternatively, to load with `weights_only=True` please check " |
|
"the recommended steps in the following error message.\n\tWeightsUnpickler error: " |
|
+ message |
|
) |
|
else: |
|
updated_message = ( |
|
f"Weights only load failed. {UNSAFE_MESSAGE}\n Please file an issue with the following " |
|
"so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler " |
|
"error: " + message |
|
) |
|
return updated_message + DOCS_MESSAGE |
|
|
|
if weights_only is None: |
|
weights_only, warn_weights_only = False, True |
|
else: |
|
warn_weights_only = False |
|
|
|
|
|
if os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0").lower() in ['1', 'y', 'yes', 'true']: |
|
weights_only = True |
|
|
|
if weights_only: |
|
if pickle_module is not None: |
|
raise RuntimeError("Can not safely load weights when explicit pickle_module is specified") |
|
else: |
|
if pickle_module is None: |
|
if warn_weights_only: |
|
warnings.warn( |
|
"You are using `torch.load` with `weights_only=False` (the current default value), which uses " |
|
"the default pickle module implicitly. It is possible to construct malicious pickle data " |
|
"which will execute arbitrary code during unpickling (See " |
|
"https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). " |
|
"In a future release, the default value for `weights_only` will be flipped to `True`. This " |
|
"limits the functions that could be executed during unpickling. Arbitrary objects will no " |
|
"longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the " |
|
"user via `torch.serialization.add_safe_globals`. We recommend you start setting " |
|
"`weights_only=True` for any use case where you don't have full control of the loaded file. " |
|
"Please open an issue on GitHub for any issues related to this experimental feature.", |
|
FutureWarning, |
|
stacklevel=2, |
|
) |
|
pickle_module = pickle |
|
|
|
|
|
if mmap is None: |
|
mmap = False |
|
|
|
_check_dill_version(pickle_module) |
|
|
|
if 'encoding' not in pickle_load_args.keys(): |
|
pickle_load_args['encoding'] = 'utf-8' |
|
|
|
with _open_file_like(f, 'rb') as opened_file: |
|
if _is_zipfile(opened_file): |
|
|
|
|
|
|
|
orig_position = opened_file.tell() |
|
overall_storage = None |
|
with _open_zipfile_reader(opened_file) as opened_zipfile: |
|
if _is_torchscript_zip(opened_zipfile): |
|
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive" |
|
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to" |
|
" silence this warning)", UserWarning) |
|
opened_file.seek(orig_position) |
|
return torch.jit.load(opened_file, map_location=map_location) |
|
if mmap: |
|
if not _is_path(f): |
|
raise ValueError("f must be a file path in order to use the mmap argument") |
|
size = os.path.getsize(f) |
|
if not IS_WINDOWS: |
|
shared = get_default_mmap_options() == MAP_SHARED |
|
else: |
|
shared = False |
|
overall_storage = torch.UntypedStorage.from_file(os.fspath(f), shared, size) |
|
if weights_only: |
|
try: |
|
return _load(opened_zipfile, |
|
map_location, |
|
_weights_only_unpickler, |
|
overall_storage=overall_storage, |
|
**pickle_load_args) |
|
except RuntimeError as e: |
|
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None |
|
return _load( |
|
opened_zipfile, |
|
map_location, |
|
pickle_module, |
|
overall_storage=overall_storage, |
|
**pickle_load_args, |
|
) |
|
if mmap: |
|
f_name = "" if not isinstance(f, str) else f"{f}, " |
|
raise RuntimeError("mmap can only be used with files saved with " |
|
f"`torch.save({f_name}_use_new_zipfile_serialization=True), " |
|
"please torch.save your checkpoint with this option in order to use mmap.") |
|
if weights_only: |
|
try: |
|
return _legacy_load(opened_file, map_location, _weights_only_unpickler, **pickle_load_args) |
|
except RuntimeError as e: |
|
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None |
|
return _legacy_load( |
|
opened_file, map_location, pickle_module, **pickle_load_args |
|
) |
|
|
|
|
|
|
|
|
|
def _get_layout(name): |
|
"""Get layout extension object from its string representation. |
|
""" |
|
cache = _get_layout.cache |
|
if not cache: |
|
for v in torch.__dict__.values(): |
|
if isinstance(v, torch.layout): |
|
cache[str(v)] = v |
|
return cache[name] |
|
|
|
|
|
_get_layout.cache = {} |
|
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),))) |
|
|
|
|
|
def _legacy_load(f, map_location, pickle_module, **pickle_load_args): |
|
deserialized_objects: Dict[int, Any] = {} |
|
|
|
restore_location = _get_restore_location(map_location) |
|
|
|
class UnpicklerWrapper(pickle_module.Unpickler): |
|
|
|
def find_class(self, mod_name, name): |
|
if type(name) is str and 'Storage' in name: |
|
try: |
|
return StorageType(name) |
|
except KeyError: |
|
pass |
|
return super().find_class(mod_name, name) |
|
|
|
def _check_container_source(container_type, source_file, original_source): |
|
try: |
|
current_source = ''.join(get_source_lines_and_file(container_type)[0]) |
|
except Exception: |
|
warnings.warn("Couldn't retrieve source code for container of " |
|
"type " + container_type.__name__ + ". It won't be checked " |
|
"for correctness upon loading.") |
|
return |
|
if original_source != current_source: |
|
if container_type.dump_patches: |
|
file_name = container_type.__name__ + '.patch' |
|
diff = difflib.unified_diff(current_source.split('\n'), |
|
original_source.split('\n'), |
|
source_file, |
|
source_file, lineterm="") |
|
lines = '\n'.join(diff) |
|
try: |
|
with open(file_name, 'a+') as f: |
|
file_size = f.seek(0, 2) |
|
f.seek(0) |
|
if file_size == 0: |
|
f.write(lines) |
|
elif file_size != len(lines) or f.read() != lines: |
|
raise OSError |
|
msg = ("Saved a reverse patch to " + file_name + ". " |
|
"Run `patch -p0 < " + file_name + "` to revert your " |
|
"changes.") |
|
except OSError: |
|
msg = ("Tried to save a patch, but couldn't create a " |
|
"writable file " + file_name + ". Make sure it " |
|
"doesn't exist and your working directory is " |
|
"writable.") |
|
else: |
|
msg = ("you can retrieve the original source code by " |
|
"accessing the object's source attribute or set " |
|
"`torch.nn.Module.dump_patches = True` and use the " |
|
"patch tool to revert the changes.") |
|
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}" |
|
warnings.warn(msg, SourceChangeWarning) |
|
|
|
def legacy_load(f): |
|
deserialized_objects: Dict[int, Any] = {} |
|
|
|
def persistent_load(saved_id): |
|
if isinstance(saved_id, tuple): |
|
|
|
if all(saved_id[1:]): |
|
_check_container_source(*saved_id) |
|
return saved_id[0] |
|
return deserialized_objects[int(saved_id)] |
|
|
|
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \ |
|
mkdtemp() as tmpdir: |
|
|
|
tar.extract('storages', path=tmpdir) |
|
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f: |
|
num_storages = pickle_module.load(f, **pickle_load_args) |
|
for i in range(num_storages): |
|
args = pickle_module.load(f, **pickle_load_args) |
|
key, location, storage_type = args |
|
dtype = storage_type._dtype |
|
obj = cast(Storage, torch.UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype)) |
|
obj = restore_location(obj, location) |
|
|
|
|
|
deserialized_objects[key] = torch.storage.TypedStorage( |
|
wrap_storage=obj, |
|
dtype=dtype, |
|
_internal=True) |
|
|
|
storage_views = pickle_module.load(f, **pickle_load_args) |
|
for target_cdata, root_cdata, offset, numel in storage_views: |
|
root = deserialized_objects[root_cdata] |
|
element_size = torch._utils._element_size(root.dtype) |
|
offset_bytes = offset * element_size |
|
|
|
|
|
deserialized_objects[target_cdata] = torch.storage.TypedStorage( |
|
wrap_storage=root._untyped_storage[offset_bytes:offset_bytes + numel * element_size], |
|
dtype=root.dtype, |
|
_internal=True) |
|
|
|
tar.extract('tensors', path=tmpdir) |
|
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f: |
|
num_tensors = pickle_module.load(f, **pickle_load_args) |
|
for _ in range(num_tensors): |
|
args = pickle_module.load(f, **pickle_load_args) |
|
key, storage_id, original_tensor_type = args |
|
storage = deserialized_objects[storage_id] |
|
ndim, = struct.unpack('<i', f.read(4)) |
|
|
|
f.read(4) |
|
numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim)) |
|
stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim)) |
|
storage_offset, = struct.unpack('<q', f.read(8)) |
|
tensor = torch.empty((0,), dtype=storage.dtype).set_( |
|
storage._untyped_storage, storage_offset, numel, stride) |
|
deserialized_objects[key] = tensor |
|
|
|
pickle_file = tar.extractfile('pickle') |
|
unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args) |
|
unpickler.persistent_load = persistent_load |
|
result = unpickler.load() |
|
return result |
|
|
|
deserialized_objects = {} |
|
|
|
def persistent_load(saved_id): |
|
assert isinstance(saved_id, tuple) |
|
typename = _maybe_decode_ascii(saved_id[0]) |
|
data = saved_id[1:] |
|
|
|
if typename == 'module': |
|
|
|
if all(data[1:]): |
|
_check_container_source(*data) |
|
return data[0] |
|
elif typename == 'storage': |
|
storage_type, root_key, location, numel, view_metadata = data |
|
location = _maybe_decode_ascii(location) |
|
dtype = storage_type.dtype |
|
|
|
nbytes = numel * torch._utils._element_size(dtype) |
|
|
|
if root_key not in deserialized_objects: |
|
if torch._guards.active_fake_mode() is not None: |
|
obj = cast(Storage, torch.UntypedStorage(nbytes, device='meta')) |
|
else: |
|
obj = cast(Storage, torch.UntypedStorage(nbytes)) |
|
obj._torch_load_uninitialized = True |
|
obj = restore_location(obj, location) |
|
|
|
|
|
typed_storage = torch.storage.TypedStorage( |
|
wrap_storage=obj, |
|
dtype=dtype, |
|
_internal=True) |
|
deserialized_objects[root_key] = typed_storage |
|
else: |
|
typed_storage = deserialized_objects[root_key] |
|
if typed_storage._data_ptr() == 0: |
|
typed_storage = torch.storage.TypedStorage( |
|
device=typed_storage._untyped_storage.device, |
|
dtype=dtype, |
|
_internal=True) |
|
|
|
if view_metadata is not None: |
|
view_key, offset, view_size = view_metadata |
|
offset_bytes = offset * torch._utils._element_size(dtype) |
|
view_size_bytes = view_size * torch._utils._element_size(dtype) |
|
if view_key not in deserialized_objects: |
|
|
|
|
|
deserialized_objects[view_key] = torch.storage.TypedStorage( |
|
wrap_storage=typed_storage._untyped_storage[offset_bytes:offset_bytes + view_size_bytes], |
|
dtype=dtype, |
|
_internal=True) |
|
res = deserialized_objects[view_key] |
|
|
|
else: |
|
res = typed_storage |
|
return res |
|
else: |
|
raise RuntimeError(f"Unknown saved id type: {saved_id[0]}") |
|
|
|
_check_seekable(f) |
|
f_should_read_directly = _should_read_directly(f) |
|
|
|
if f_should_read_directly and f.tell() == 0: |
|
|
|
|
|
try: |
|
return legacy_load(f) |
|
except tarfile.TarError: |
|
if _is_zipfile(f): |
|
|
|
raise RuntimeError( |
|
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None |
|
|
|
f.seek(0) |
|
|
|
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2): |
|
raise RuntimeError( |
|
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. " |
|
f'Received object of type "{type(f)}". Please update to Python 3.8.2 or newer to restore this ' |
|
"functionality.") |
|
|
|
magic_number = pickle_module.load(f, **pickle_load_args) |
|
if magic_number != MAGIC_NUMBER: |
|
raise RuntimeError("Invalid magic number; corrupt file?") |
|
protocol_version = pickle_module.load(f, **pickle_load_args) |
|
if protocol_version != PROTOCOL_VERSION: |
|
raise RuntimeError(f"Invalid protocol version: {protocol_version}") |
|
|
|
_sys_info = pickle_module.load(f, **pickle_load_args) |
|
unpickler = UnpicklerWrapper(f, **pickle_load_args) |
|
unpickler.persistent_load = persistent_load |
|
result = unpickler.load() |
|
|
|
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args) |
|
|
|
if torch._guards.active_fake_mode() is None: |
|
offset = f.tell() if f_should_read_directly else None |
|
for key in deserialized_storage_keys: |
|
assert key in deserialized_objects |
|
typed_storage = deserialized_objects[key] |
|
typed_storage._untyped_storage._set_from_file( |
|
f, offset, f_should_read_directly, |
|
torch._utils._element_size(typed_storage.dtype)) |
|
if offset is not None: |
|
offset = f.tell() |
|
|
|
torch._utils._validate_loaded_sparse_tensors() |
|
|
|
return result |
|
|
|
|
|
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str: |
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(bytes_str, bytes): |
|
return bytes_str.decode('ascii') |
|
return bytes_str |
|
|
|
|
|
def _get_restore_location(map_location): |
|
if map_location is None: |
|
restore_location = default_restore_location |
|
elif isinstance(map_location, dict): |
|
def restore_location(storage, location): |
|
location = map_location.get(location, location) |
|
return default_restore_location(storage, location) |
|
elif isinstance(map_location, (str, bytes)): |
|
def restore_location(storage, location): |
|
return default_restore_location(storage, map_location) |
|
elif isinstance(map_location, torch.device): |
|
def restore_location(storage, location): |
|
return default_restore_location(storage, str(map_location)) |
|
else: |
|
def restore_location(storage, location): |
|
result = map_location(storage, location) |
|
if result is None: |
|
result = default_restore_location(storage, location) |
|
return result |
|
return restore_location |
|
|
|
|
|
class StorageType: |
|
def __init__(self, name): |
|
self._dtype = _get_dtype_from_pickle_storage_type(name) |
|
|
|
@property |
|
def dtype(self): |
|
return self._dtype |
|
|
|
def __str__(self): |
|
return f'StorageType(dtype={self.dtype})' |
|
|
|
|
|
def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', overall_storage=None, **pickle_load_args): |
|
restore_location = _get_restore_location(map_location) |
|
|
|
loaded_storages = {} |
|
|
|
|
|
byteordername = 'byteorder' |
|
byteorderdata = None |
|
if zip_file.has_record(byteordername): |
|
byteorderdata = zip_file.get_record(byteordername) |
|
if byteorderdata not in [b'little', b'big']: |
|
raise ValueError('Unknown endianness type: ' + byteorderdata.decode()) |
|
elif get_default_load_endianness() == LoadEndianness.LITTLE or \ |
|
get_default_load_endianness() is None: |
|
byteorderdata = b'little' |
|
elif get_default_load_endianness() == LoadEndianness.BIG: |
|
byteorderdata = b'big' |
|
elif get_default_load_endianness() == LoadEndianness.NATIVE: |
|
pass |
|
else: |
|
raise ValueError('Invalid load endianness type') |
|
|
|
if not zip_file.has_record(byteordername) and \ |
|
get_default_load_endianness() is None and \ |
|
sys.byteorder == 'big': |
|
|
|
|
|
warnings.warn("The default load endianness for checkpoints without a byteorder mark " |
|
"on big endian machines was changed from 'native' to 'little' endian, " |
|
"to avoid this behavior please use " |
|
"torch.serialization.set_default_load_endianness to set " |
|
"the desired default load endianness", |
|
UserWarning) |
|
|
|
def load_tensor(dtype, numel, key, location): |
|
name = f'data/{key}' |
|
if torch._guards.detect_fake_mode(None) is not None: |
|
nbytes = numel * torch._utils._element_size(dtype) |
|
storage = torch.UntypedStorage(nbytes, device='meta') |
|
elif overall_storage is not None: |
|
storage_offset = zip_file.get_record_offset(name) |
|
storage = overall_storage[storage_offset:storage_offset + numel] |
|
else: |
|
storage = zip_file.get_storage_from_record(name, numel, torch.UntypedStorage)._typed_storage()._untyped_storage |
|
|
|
if byteorderdata is not None: |
|
if byteorderdata.decode() != sys.byteorder: |
|
storage.byteswap(dtype) |
|
|
|
|
|
|
|
typed_storage = torch.storage.TypedStorage( |
|
wrap_storage=restore_location(storage, location), |
|
dtype=dtype, |
|
_internal=True) |
|
|
|
if typed_storage._data_ptr() != 0: |
|
loaded_storages[key] = typed_storage |
|
|
|
return typed_storage |
|
|
|
def persistent_load(saved_id): |
|
assert isinstance(saved_id, tuple) |
|
typename = _maybe_decode_ascii(saved_id[0]) |
|
data = saved_id[1:] |
|
|
|
assert typename == 'storage', \ |
|
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'" |
|
storage_type, key, location, numel = data |
|
if storage_type is torch.UntypedStorage: |
|
dtype = torch.uint8 |
|
else: |
|
dtype = storage_type.dtype |
|
|
|
if key in loaded_storages: |
|
typed_storage = loaded_storages[key] |
|
else: |
|
nbytes = numel * torch._utils._element_size(dtype) |
|
typed_storage = load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location)) |
|
|
|
return typed_storage |
|
|
|
load_module_mapping: Dict[str, str] = { |
|
|
|
'torch.tensor': 'torch._tensor' |
|
} |
|
|
|
|
|
|
|
|
|
class UnpicklerWrapper(pickle_module.Unpickler): |
|
|
|
|
|
|
|
def find_class(self, mod_name, name): |
|
if type(name) is str and 'Storage' in name: |
|
try: |
|
return StorageType(name) |
|
except KeyError: |
|
pass |
|
mod_name = load_module_mapping.get(mod_name, mod_name) |
|
return super().find_class(mod_name, name) |
|
|
|
|
|
data_file = io.BytesIO(zip_file.get_record(pickle_file)) |
|
|
|
unpickler = UnpicklerWrapper(data_file, **pickle_load_args) |
|
unpickler.persistent_load = persistent_load |
|
|
|
|
|
torch._utils._thread_local_state.map_location = map_location |
|
result = unpickler.load() |
|
del torch._utils._thread_local_state.map_location |
|
|
|
torch._utils._validate_loaded_sparse_tensors() |
|
torch._C._log_api_usage_metadata( |
|
"torch.load.metadata", {"serialization_id": zip_file.serialization_id()} |
|
) |
|
return result |
|
|
|
|
|
def _is_torchscript_zip(zip_file): |
|
return 'constants.pkl' in zip_file.get_all_records() |
|
|