|
|
|
|
|
from typing import Optional, Tuple, List, Union, Any |
|
|
|
import torch |
|
from torch._C import _add_docstr, _sparse |
|
from torch import Tensor |
|
|
|
|
|
from .semi_structured import ( |
|
SparseSemiStructuredTensor, |
|
SparseSemiStructuredTensorCUSPARSELT, |
|
SparseSemiStructuredTensorCUTLASS, |
|
to_sparse_semi_structured |
|
) |
|
|
|
|
|
from typing import TYPE_CHECKING |
|
if TYPE_CHECKING: |
|
from torch.types import _dtype as DType |
|
DimOrDims = Optional[Union[int, Tuple[int, ...], List[int]]] |
|
else: |
|
|
|
DType = int |
|
DimOrDims = Optional[Tuple[int]] |
|
|
|
|
|
__all__ = [ |
|
'addmm', |
|
'check_sparse_tensor_invariants', |
|
'mm', |
|
'sum', |
|
'softmax', |
|
'log_softmax', |
|
'SparseSemiStructuredTensor', |
|
'SparseSemiStructuredTensorCUTLASS', |
|
'SparseSemiStructuredTensorCUSPARSELT', |
|
'to_sparse_semi_structured', |
|
'as_sparse_gradcheck', |
|
] |
|
|
|
addmm = _add_docstr(_sparse._sparse_addmm, r""" |
|
sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor |
|
|
|
This function does exact same thing as :func:`torch.addmm` in the forward, |
|
except that it supports backward for sparse COO matrix :attr:`mat1`. |
|
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`. |
|
When inputs are COO tensors, this function also supports backward for both inputs. |
|
|
|
Supports both CSR and COO storage formats. |
|
|
|
.. note:: |
|
This function doesn't support computing derivaties with respect to CSR matrices. |
|
|
|
Args: |
|
mat (Tensor): a dense matrix to be added |
|
mat1 (Tensor): a sparse matrix to be multiplied |
|
mat2 (Tensor): a dense matrix to be multiplied |
|
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
|
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
|
""") |
|
|
|
|
|
mm = _add_docstr(_sparse._sparse_mm, r""" |
|
Performs a matrix multiplication of the sparse matrix :attr:`mat1` |
|
and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, if :attr:`mat1` is a |
|
:math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a |
|
:math:`(n \times p)` tensor. |
|
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`. |
|
When inputs are COO tensors, this function also supports backward for both inputs. |
|
|
|
Supports both CSR and COO storage formats. |
|
|
|
.. note:: |
|
This function doesn't support computing derivaties with respect to CSR matrices. |
|
|
|
This function also additionally accepts an optional :attr:`reduce` argument that allows |
|
specification of an optional reduction operation, mathematically performs the following operation: |
|
|
|
.. math:: |
|
|
|
z_{ij} = \bigoplus_{k = 0}^{K - 1} x_{ik} y_{kj} |
|
|
|
where :math:`\bigoplus` defines the reduce operator. :attr:`reduce` is implemented only for |
|
CSR storage format on CPU device. |
|
|
|
Args: |
|
mat1 (Tensor): the first sparse matrix to be multiplied |
|
mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense |
|
reduce (str, optional): the reduction operation to apply for non-unique indices |
|
(:obj:`"sum"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`). Default :obj:`"sum"`. |
|
|
|
Shape: |
|
The format of the output tensor of this function follows: |
|
- sparse x sparse -> sparse |
|
- sparse x dense -> dense |
|
|
|
Example:: |
|
|
|
>>> a = torch.tensor([[1., 0, 2], [0, 3, 0]]).to_sparse().requires_grad_() |
|
>>> a |
|
tensor(indices=tensor([[0, 0, 1], |
|
[0, 2, 1]]), |
|
values=tensor([1., 2., 3.]), |
|
size=(2, 3), nnz=3, layout=torch.sparse_coo, requires_grad=True) |
|
>>> b = torch.tensor([[0, 1.], [2, 0], [0, 0]], requires_grad=True) |
|
>>> b |
|
tensor([[0., 1.], |
|
[2., 0.], |
|
[0., 0.]], requires_grad=True) |
|
>>> y = torch.sparse.mm(a, b) |
|
>>> y |
|
tensor([[0., 1.], |
|
[6., 0.]], grad_fn=<SparseAddmmBackward0>) |
|
>>> y.sum().backward() |
|
>>> a.grad |
|
tensor(indices=tensor([[0, 0, 1], |
|
[0, 2, 1]]), |
|
values=tensor([1., 0., 2.]), |
|
size=(2, 3), nnz=3, layout=torch.sparse_coo) |
|
>>> c = a.detach().to_sparse_csr() |
|
>>> c |
|
tensor(crow_indices=tensor([0, 2, 3]), |
|
col_indices=tensor([0, 2, 1]), |
|
values=tensor([1., 2., 3.]), size=(2, 3), nnz=3, |
|
layout=torch.sparse_csr) |
|
>>> y1 = torch.sparse.mm(c, b, 'sum') |
|
>>> y1 |
|
tensor([[0., 1.], |
|
[6., 0.]], grad_fn=<SparseMmReduceImplBackward0>) |
|
>>> y2 = torch.sparse.mm(c, b, 'max') |
|
>>> y2 |
|
tensor([[0., 1.], |
|
[6., 0.]], grad_fn=<SparseMmReduceImplBackward0>) |
|
""") |
|
|
|
|
|
sampled_addmm = _add_docstr(_sparse.sparse_sampled_addmm, r""" |
|
sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor |
|
|
|
Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations |
|
specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result. |
|
|
|
Mathematically this performs the following operation: |
|
|
|
.. math:: |
|
|
|
\text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input} |
|
|
|
where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha` |
|
and :attr:`beta` are the scaling factors. |
|
:math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere. |
|
|
|
.. note:: |
|
:attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors. |
|
|
|
Args: |
|
input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute |
|
the sampled matrix multiplication |
|
mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied |
|
mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied |
|
|
|
Keyword args: |
|
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) |
|
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. |
|
|
|
Examples:: |
|
|
|
>>> input = torch.eye(3, device='cuda').to_sparse_csr() |
|
>>> mat1 = torch.randn(3, 5, device='cuda') |
|
>>> mat2 = torch.randn(5, 3, device='cuda') |
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2) |
|
tensor(crow_indices=tensor([0, 1, 2, 3]), |
|
col_indices=tensor([0, 1, 2]), |
|
values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0', |
|
size=(3, 3), nnz=3, layout=torch.sparse_csr) |
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense() |
|
tensor([[ 0.2847, 0.0000, 0.0000], |
|
[ 0.0000, -0.7805, 0.0000], |
|
[ 0.0000, 0.0000, -0.1900]], device='cuda:0') |
|
>>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5) |
|
tensor(crow_indices=tensor([0, 1, 2, 3]), |
|
col_indices=tensor([0, 1, 2]), |
|
values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0', |
|
size=(3, 3), nnz=3, layout=torch.sparse_csr) |
|
""") |
|
|
|
def sum(input: Tensor, dim: DimOrDims = None, |
|
dtype: Optional[DType] = None) -> Tensor: |
|
r"""Return the sum of each row of the given sparse tensor. |
|
|
|
Returns the sum of each row of the sparse tensor :attr:`input` in the given |
|
dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions, |
|
reduce over all of them. When sum over all ``sparse_dim``, this method |
|
returns a dense tensor instead of a sparse tensor. |
|
|
|
All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output |
|
tensor having :attr:`dim` fewer dimensions than :attr:`input`. |
|
|
|
During backward, only gradients at ``nnz`` locations of :attr:`input` |
|
will propagate back. Note that the gradients of :attr:`input` is coalesced. |
|
|
|
Args: |
|
input (Tensor): the input sparse tensor |
|
dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce |
|
over all dims. |
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. |
|
Default: dtype of :attr:`input`. |
|
|
|
Example:: |
|
|
|
>>> nnz = 3 |
|
>>> dims = [5, 5, 2, 3] |
|
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)), |
|
torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz) |
|
>>> V = torch.randn(nnz, dims[2], dims[3]) |
|
>>> size = torch.Size(dims) |
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> S = torch.sparse_coo_tensor(I, V, size) |
|
>>> S |
|
tensor(indices=tensor([[2, 0, 3], |
|
[2, 4, 1]]), |
|
values=tensor([[[-0.6438, -1.6467, 1.4004], |
|
[ 0.3411, 0.0918, -0.2312]], |
|
|
|
[[ 0.5348, 0.0634, -2.0494], |
|
[-0.7125, -1.0646, 2.1844]], |
|
|
|
[[ 0.1276, 0.1874, -0.6334], |
|
[-1.9682, -0.5340, 0.7483]]]), |
|
size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) |
|
|
|
# when sum over only part of sparse_dims, return a sparse tensor |
|
>>> torch.sparse.sum(S, [1, 3]) |
|
tensor(indices=tensor([[0, 2, 3]]), |
|
values=tensor([[-1.4512, 0.4073], |
|
[-0.8901, 0.2017], |
|
[-0.3183, -1.7539]]), |
|
size=(5, 2), nnz=3, layout=torch.sparse_coo) |
|
|
|
# when sum over all sparse dim, return a dense tensor |
|
# with summed dims squeezed |
|
>>> torch.sparse.sum(S, [0, 1, 3]) |
|
tensor([-2.6596, -1.1450]) |
|
""" |
|
if dtype is None: |
|
if dim is not None: |
|
return torch._sparse_sum(input, dim) |
|
else: |
|
return torch._sparse_sum(input) |
|
else: |
|
if dim is not None: |
|
return torch._sparse_sum(input, dim, dtype=dtype) |
|
else: |
|
return torch._sparse_sum(input, dtype=dtype) |
|
|
|
|
|
softmax = _add_docstr(_sparse._sparse_softmax, r""" |
|
sparse.softmax(input, dim, *, dtype=None) -> Tensor |
|
|
|
Applies a softmax function. |
|
|
|
Softmax is defined as: |
|
|
|
:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}` |
|
|
|
where :math:`i, j` run over sparse tensor indices and unspecified |
|
entries are ignores. This is equivalent to defining unspecified |
|
entries as negative infinity so that :math:`exp(x_k) = 0` when the |
|
entry with index :math:`k` has not specified. |
|
|
|
It is applied to all slices along `dim`, and will re-scale them so |
|
that the elements lie in the range `[0, 1]` and sum to 1. |
|
|
|
Args: |
|
input (Tensor): input |
|
dim (int): A dimension along which softmax will be computed. |
|
dtype (:class:`torch.dtype`, optional): the desired data type |
|
of returned tensor. If specified, the input tensor is |
|
casted to :attr:`dtype` before the operation is |
|
performed. This is useful for preventing data type |
|
overflows. Default: None |
|
""") |
|
|
|
|
|
log_softmax = _add_docstr(_sparse._sparse_log_softmax, r""" |
|
sparse.log_softmax(input, dim, *, dtype=None) -> Tensor |
|
|
|
Applies a softmax function followed by logarithm. |
|
|
|
See :class:`~torch.sparse.softmax` for more details. |
|
|
|
Args: |
|
input (Tensor): input |
|
dim (int): A dimension along which softmax will be computed. |
|
dtype (:class:`torch.dtype`, optional): the desired data type |
|
of returned tensor. If specified, the input tensor is |
|
casted to :attr:`dtype` before the operation is |
|
performed. This is useful for preventing data type |
|
overflows. Default: None |
|
""") |
|
|
|
|
|
spdiags = _add_docstr( |
|
_sparse._spdiags, |
|
r""" |
|
sparse.spdiags(diagonals, offsets, shape, layout=None) -> Tensor |
|
|
|
Creates a sparse 2D tensor by placing the values from rows of |
|
:attr:`diagonals` along specified diagonals of the output |
|
|
|
The :attr:`offsets` tensor controls which diagonals are set. |
|
|
|
- If :attr:`offsets[i]` = 0, it is the main diagonal |
|
- If :attr:`offsets[i]` < 0, it is below the main diagonal |
|
- If :attr:`offsets[i]` > 0, it is above the main diagonal |
|
|
|
The number of rows in :attr:`diagonals` must match the length of :attr:`offsets`, |
|
and an offset may not be repeated. |
|
|
|
Args: |
|
diagonals (Tensor): Matrix storing diagonals row-wise |
|
offsets (Tensor): The diagonals to be set, stored as a vector |
|
shape (2-tuple of ints): The desired shape of the result |
|
Keyword args: |
|
layout (:class:`torch.layout`, optional): The desired layout of the |
|
returned tensor. ``torch.sparse_coo``, ``torch.sparse_csc`` and ``torch.sparse_csr`` |
|
are supported. Default: ``torch.sparse_coo`` |
|
|
|
Examples: |
|
|
|
Set the main and first two lower diagonals of a matrix:: |
|
|
|
>>> diags = torch.arange(9).reshape(3, 3) |
|
>>> diags |
|
tensor([[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8]]) |
|
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3)) |
|
>>> s |
|
tensor(indices=tensor([[0, 1, 2, 1, 2, 2], |
|
[0, 1, 2, 0, 1, 0]]), |
|
values=tensor([0, 1, 2, 3, 4, 6]), |
|
size=(3, 3), nnz=6, layout=torch.sparse_coo) |
|
>>> s.to_dense() |
|
tensor([[0, 0, 0], |
|
[3, 1, 0], |
|
[6, 4, 2]]) |
|
|
|
|
|
Change the output layout:: |
|
|
|
>>> diags = torch.arange(9).reshape(3, 3) |
|
>>> diags |
|
tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8]) |
|
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr) |
|
>>> s |
|
tensor(crow_indices=tensor([0, 1, 3, 6]), |
|
col_indices=tensor([0, 0, 1, 0, 1, 2]), |
|
values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6, |
|
layout=torch.sparse_csr) |
|
>>> s.to_dense() |
|
tensor([[0, 0, 0], |
|
[3, 1, 0], |
|
[6, 4, 2]]) |
|
|
|
Set partial diagonals of a large output:: |
|
|
|
>>> diags = torch.tensor([[1, 2], [3, 4]]) |
|
>>> offsets = torch.tensor([0, -1]) |
|
>>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense() |
|
tensor([[1, 0, 0, 0, 0], |
|
[3, 2, 0, 0, 0], |
|
[0, 4, 0, 0, 0], |
|
[0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0]]) |
|
|
|
.. note:: |
|
|
|
When setting the values along a given diagonal the index into the diagonal |
|
and the index into the row of :attr:`diagonals` is taken as the |
|
column index in the output. This has the effect that when setting a diagonal |
|
with a positive offset `k` the first value along that diagonal will be |
|
the value in position `k` of the row of :attr:`diagonals` |
|
|
|
Specifying a positive offset:: |
|
|
|
>>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) |
|
>>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense() |
|
tensor([[1, 2, 3, 0, 0], |
|
[0, 2, 3, 0, 0], |
|
[0, 0, 3, 0, 0], |
|
[0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0]]) |
|
""") |
|
|
|
|
|
class check_sparse_tensor_invariants: |
|
"""A tool to control checking sparse tensor invariants. |
|
|
|
The following options exists to manage sparsr tensor invariants |
|
checking in sparse tensor construction: |
|
|
|
1. Using a context manager: |
|
|
|
.. code:: python |
|
|
|
with torch.sparse.check_sparse_tensor_invariants(): |
|
run_my_model() |
|
|
|
2. Using a procedural approach: |
|
|
|
.. code:: python |
|
|
|
prev_checks_enabled = torch.sparse.check_sparse_tensor_invariants.is_enabled() |
|
torch.sparse.check_sparse_tensor_invariants.enable() |
|
|
|
run_my_model() |
|
|
|
if not prev_checks_enabled: |
|
torch.sparse.check_sparse_tensor_invariants.disable() |
|
|
|
3. Using function decoration: |
|
|
|
.. code:: python |
|
|
|
@torch.sparse.check_sparse_tensor_invariants() |
|
def run_my_model(): |
|
... |
|
|
|
run_my_model() |
|
|
|
4. Using ``check_invariants`` keyword argument in sparse tensor constructor call. |
|
For example: |
|
|
|
>>> torch.sparse_csr_tensor([0, 1, 3], [0, 1], [1, 2], check_invariants=True) |
|
Traceback (most recent call last): |
|
File "<stdin>", line 1, in <module> |
|
RuntimeError: `crow_indices[..., -1] == nnz` is not satisfied. |
|
""" |
|
|
|
@staticmethod |
|
def is_enabled(): |
|
r"""Return True if the sparse tensor invariants checking is enabled. |
|
|
|
.. note:: |
|
|
|
Use :func:`torch.sparse.check_sparse_tensor_invariants.enable` or |
|
:func:`torch.sparse.check_sparse_tensor_invariants.disable` to |
|
manage the state of the sparse tensor invariants checks. |
|
""" |
|
return torch._C._check_sparse_tensor_invariants() |
|
|
|
@staticmethod |
|
def enable(): |
|
r"""Enable sparse tensor invariants checking in sparse tensor constructors. |
|
|
|
.. note:: |
|
|
|
By default, the sparse tensor invariants checks are disabled. Use |
|
:func:`torch.sparse.check_sparse_tensor_invariants.is_enabled` to |
|
retrieve the current state of sparse tensor invariants checking. |
|
|
|
.. note:: |
|
|
|
The sparse tensor invariants check flag is effective to all sparse |
|
tensor constructors, both in Python and ATen. |
|
|
|
The flag can be locally overridden by the ``check_invariants`` |
|
optional argument of the sparse tensor constructor functions. |
|
""" |
|
torch._C._set_check_sparse_tensor_invariants(True) |
|
|
|
@staticmethod |
|
def disable(): |
|
r"""Disable sparse tensor invariants checking in sparse tensor constructors. |
|
|
|
See :func:`torch.sparse.check_sparse_tensor_invariants.enable` for more information. |
|
""" |
|
torch._C._set_check_sparse_tensor_invariants(False) |
|
|
|
|
|
def __init__(self, enable=True): |
|
self.state = enable |
|
self.saved_state : Optional[bool] = None |
|
|
|
def __enter__(self): |
|
if self.saved_state is not None: |
|
raise RuntimeError('This context manager instance is already activated.' |
|
' Use a different context manager instance for context nesting.') |
|
self.saved_state = self.is_enabled() |
|
torch._C._set_check_sparse_tensor_invariants(self.state) |
|
|
|
def __exit__(self, type, value, traceback): |
|
assert self.saved_state is not None |
|
torch._C._set_check_sparse_tensor_invariants(self.saved_state) |
|
self.saved_state = None |
|
|
|
|
|
def __call__(self, mth): |
|
|
|
def test_mth(*args, **kwargs): |
|
with type(self)(self.state): |
|
return mth(*args, **kwargs) |
|
|
|
return test_mth |
|
|
|
|
|
def as_sparse_gradcheck(gradcheck): |
|
"""Decorate function, to extend gradcheck for sparse tensors. |
|
|
|
Decorator for torch.autograd.gradcheck or its functools.partial |
|
variants that extends the gradcheck function with support to input |
|
functions that operate on or/and return sparse tensors. |
|
|
|
The specified gradcheck function itself is guaranteed to operate |
|
on strided tensors only. |
|
|
|
For example: |
|
|
|
>>> gradcheck = torch.sparse.as_sparse_gradcheck(torch.autograd.gradcheck) |
|
>>> x = torch.tensor([[0, 1], [2, 3]], dtype=torch.float64).to_sparse_coo().requires_grad_(True) |
|
>>> gradcheck(lambda x: x.to_sparse_csr(), x) |
|
True |
|
""" |
|
|
|
def gradcheck_with_sparse_support(func, inputs, **kwargs): |
|
""" |
|
Create gradcheck with support for sparse tensors. |
|
|
|
Same as :func:`torch.autograd.gradcheck` but with sparse tensors inputs and outputs support. |
|
""" |
|
masked = kwargs.pop('masked', False) |
|
sparse_layouts = {torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} |
|
sparse_compressed_layouts = {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} |
|
sparse_block_layouts = {torch.sparse_bsr, torch.sparse_bsc} |
|
STRIDED_REPRESENTATION = '__STRIDED_REPRESENTATION__' |
|
|
|
def convert_to_strided_representation(args): |
|
"""Convert differentiable non-strided tensors to a representation containing differentiable strided tensors.""" |
|
if not isinstance(args, (list, tuple)): |
|
args = args, |
|
new_args: List[Any] = [] |
|
for obj in args: |
|
if isinstance(obj, torch.Tensor) and obj.requires_grad and obj.layout in sparse_layouts: |
|
d = dict(layout=obj.layout, shape=obj.shape) |
|
if not masked: |
|
|
|
batch_dim = obj.ndim - obj.dense_dim() - obj.sparse_dim() |
|
blocksize = obj.values().shape[batch_dim + 1:batch_dim + 3] if obj.layout in sparse_block_layouts else None |
|
full_mask = torch.ones(obj.shape, device=obj.device, dtype=torch.bool).to_sparse( |
|
layout=obj.layout, blocksize=blocksize, dense_dim=obj.dense_dim()) |
|
obj = obj.to_dense().sparse_mask(full_mask) |
|
if obj.layout is torch.sparse_coo: |
|
d.update(indices=obj._indices(), is_coalesced=obj.is_coalesced()) |
|
values = obj._values() |
|
elif obj.layout in {torch.sparse_csr, torch.sparse_bsr}: |
|
d.update(compressed_indices=obj.crow_indices(), plain_indices=obj.col_indices()) |
|
values = obj.values() |
|
else: |
|
d.update(compressed_indices=obj.ccol_indices(), plain_indices=obj.row_indices()) |
|
values = obj.values() |
|
new_args.extend((STRIDED_REPRESENTATION, d, values.requires_grad_(True))) |
|
else: |
|
new_args.append(obj) |
|
return tuple(new_args) |
|
|
|
def restore_from_strided_representation(args): |
|
"""Restore non-strided differentiable tensosr from their strided representations.""" |
|
new_args = [] |
|
args = list(args) |
|
while args: |
|
a = args.pop(0) |
|
if a == STRIDED_REPRESENTATION: |
|
d, values = args.pop(0), args.pop(0) |
|
if d['layout'] is torch.sparse_coo: |
|
a = torch.sparse_coo_tensor(d['indices'], values, size=d['shape'], is_coalesced=d['is_coalesced']) |
|
elif d['layout'] in sparse_compressed_layouts: |
|
a = torch.sparse_compressed_tensor(d['compressed_indices'], d['plain_indices'], values, |
|
size=d['shape'], layout=d['layout']) |
|
else: |
|
raise NotImplementedError(f'conversion of {d["layout"]} strided representation to tensor') |
|
new_args.append(a) |
|
return tuple(new_args) |
|
|
|
def func_wrapper(*args, **kwargs): |
|
restored_args = restore_from_strided_representation(args) |
|
|
|
|
|
|
|
outputs = func(*restored_args, **kwargs) |
|
|
|
strided_outputs = tuple(outputs) if isinstance(outputs, (list, tuple)) else (outputs,) |
|
strided_outputs = tuple((o.to_dense(masked_grad=masked) |
|
if isinstance(o, torch.Tensor) and o.requires_grad and o.layout in sparse_layouts else o) |
|
for o in strided_outputs) |
|
|
|
return strided_outputs if isinstance(outputs, (list, tuple)) else strided_outputs[0] |
|
|
|
args = (func_wrapper, convert_to_strided_representation(inputs)) |
|
|
|
return gradcheck(*args, **kwargs) |
|
|
|
return gradcheck_with_sparse_support |
|
|