Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/torchgen
/native_function_generation.py
from collections import defaultdict | |
from typing import Dict, List, Optional, Sequence, Tuple, Union | |
import torchgen.api.dispatcher as dispatcher | |
from torchgen.api.translate import translate | |
from torchgen.api.types import Binding, DispatcherSignature, Expr | |
from torchgen.context import with_native_function | |
from torchgen.model import ( | |
Annotation, | |
Argument, | |
BackendIndex, | |
BackendMetadata, | |
BaseOperatorName, | |
BaseTy, | |
BaseType, | |
DEFAULT_KERNEL_NAMESPACE, | |
DeviceCheckType, | |
DispatchKey, | |
FunctionSchema, | |
NativeFunction, | |
NativeFunctionsGroup, | |
OperatorName, | |
Return, | |
SchemaKind, | |
Variant, | |
) | |
from torchgen.utils import concatMap | |
# See Note: [Out ops with functional variants that don't get grouped properly] | |
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [ | |
# This has a functional variant, but it's currently marked private. | |
# This function should be marked private as well (*_backward ops aren't exposed to python anyway). | |
"adaptive_avg_pool3d_backward.grad_input", | |
# There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly. | |
# Maybe we can kill this operator in favor of convolution_backward? | |
"_slow_conv2d_backward.grad_input", | |
] | |
# See Note: [Mutable ops that cannot get an out variant] | |
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [ | |
# should be out=? | |
"_cummax_helper", | |
# should be out=? | |
"_cummin_helper", | |
] | |
# All of these operators don't have any tensor like returns | |
FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [ | |
"_assert_async", # no return | |
"_assert_async.msg", # no return | |
"_cslt_sparse_mm_search", # returns an int | |
"_assert_scalar", # no return | |
"_dimI", # returns an int | |
"_dimV", # returns an int | |
"_has_same_storage_numel", # returns a boolean | |
"_linalg_check_errors", # no return | |
"_local_scalar_dense", # returns a Scalar | |
"_nested_tensor_from_mask_left_aligned", # returns a boolean | |
"_nnz", # returns an int | |
"_use_cudnn_ctc_loss", # returns a boolean | |
"_use_cudnn_ctc_loss.Tensor", # returns a boolean | |
"_validate_compressed_sparse_indices", # no return | |
"allclose", # returns a boolean | |
"dense_dim", # returns an int | |
"equal", # returns a boolean | |
"is_coalesced", # returns an boolean | |
"is_pinned", # returns a boolean | |
"is_same_size", # returns a boolean | |
"is_set_to", # returns a boolean | |
"q_per_channel_axis", # returns an int | |
"q_scale", # returns a float | |
"q_zero_point", # returns an int | |
"qscheme", # returns a QScheme | |
"record_stream", # no return | |
"sparse_dim", # returns an int | |
"sym_constrain_range", # no return | |
"sym_constrain_range_for_size", # no return | |
"_nested_tensor_storage_offsets", # returns a vector of ints | |
"_chunk_grad_outputs_efficient_attention", # returns a bool | |
"_fused_sdp_choice", # returns an int | |
"_print", # no return | |
"_sink_tokens", # no return | |
"_nested_get_ragged_idx", # returns an int | |
] | |
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [ | |
# polygamma and polygamma.out both exist, but have a | |
# pre-self arg (while polygamma_ does not) | |
# We should either fix this schema so it can be grouped properly, | |
# or allow the codegen to generate new functional/out= NativeFunctions for this op | |
# (which would require changing its overload name to prevent overload ambiguity). | |
"polygamma_" | |
] | |
# Groups "similar" NativeFunctions together | |
# example add.Tensor, add_.Tensor, add.out | |
# "similar" NativeFunctions are all expected to have an identical `signature()`, | |
# But have differing SchemaKinds. | |
def pre_group_native_functions( | |
native_functions: Sequence[NativeFunction], | |
) -> Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]: | |
pre_grouped_native_functions: Dict[ | |
FunctionSchema, Dict[SchemaKind, NativeFunction] | |
] = defaultdict(dict) | |
for f in native_functions: | |
d = pre_grouped_native_functions[f.func.signature()] | |
assert f.func.kind() not in d | |
d[f.func.kind()] = f | |
return pre_grouped_native_functions | |
# Returns the out variant overload name given a base function overload name | |
def get_expected_out_variant_overload_name(overload_name: Optional[str]) -> str: | |
return "out" if not overload_name else f"{overload_name}_out" | |
# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant | |
# Example before: | |
# _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!) | |
# Example after: | |
# _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) | |
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema: | |
# Generating an out= schema from an inplace schema. | |
assert func.kind() == SchemaKind.inplace | |
assert func.arguments.self_arg is not None | |
# The new out= schema has: | |
# - a new out argument with the same type as "func" (but with a mutable annotation) | |
# - The returns (if any) now alias the out= argument instead of "func" | |
# - an "out" overload name | |
return FunctionSchema( | |
name=func.name.remove_inplace().with_overload( | |
get_expected_out_variant_overload_name(func.name.overload_name) | |
), | |
arguments=func.arguments.remove_self_annotation().with_out_args( | |
[ | |
Argument( | |
name="out", | |
type=func.arguments.self_arg.argument.type, | |
default=None, | |
annotation=func.arguments.self_arg.argument.annotation, | |
) | |
] | |
), | |
returns=func.returns, | |
) | |
# Helper function: given a functional FunctionSchema, generate its corresponding out= variant | |
# Example before: | |
# _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, | |
# bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor | |
# Example after: | |
# _to_copy._out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, | |
# Tensor(a!) out) -> Tensor(a!) | |
def functional_to_out_signature(func: FunctionSchema) -> FunctionSchema: | |
# Generating an out= schema from a functional schema. | |
assert func.kind() == SchemaKind.functional | |
new_returns, new_out_args = generate_out_args_from_schema(func) | |
# The new out= schema has: | |
# - one or more new out argument(s) with the same type as returns (but with a mutable annotation) | |
# - The returns now alias the out= arguments | |
# - an "_out" overload name | |
return FunctionSchema( | |
name=func.name.with_overload( | |
get_expected_out_variant_overload_name(func.name.overload_name) | |
), | |
arguments=func.arguments.signature().with_out_args( | |
new_out_args, | |
), | |
returns=tuple(new_returns), | |
) | |
# Helper function: given a function schema, generate corresponding out arguments, also the updated return annotations. | |
def generate_out_args_from_schema( | |
func: FunctionSchema, | |
) -> Tuple[List[Return], List[Argument]]: | |
# More of a sanity check - our existing restrictions on schemas should enforce that | |
# mutable schema kinds never return their mutable arguments. | |
assert not any( | |
r.annotation is not None and r.annotation.is_write for r in func.returns | |
) | |
tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()] | |
assert len(tensorlike_rets) > 0 | |
used_annotations = concatMap( | |
lambda a: [] if a.annotation is None else a.annotation.alias_set, | |
func.arguments.flat_all, | |
) | |
valid_annotations = [ | |
x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations | |
] | |
all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns) | |
new_out_args: List[Argument] = [] | |
# The end result of new_returns is that: | |
# - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added. | |
# - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any). | |
new_returns: List[Return] = [] | |
for i, r in enumerate(func.returns): | |
if r.type.is_tensor_like(): | |
new_out = Argument( | |
name="out" if len(func.returns) == 1 else f"out{i}", | |
type=r.type, | |
default=None, | |
annotation=Annotation.parse(f"{valid_annotations[i]}!"), | |
) | |
new_out_args.append(new_out) | |
if all_rets_are_tensors: | |
# The convention for out= schemas is that they only return their out arguments | |
# if the return is a plain Tensor (or if it's a tuple of plain Tensors) | |
new_ret = Return( | |
name=None, type=new_out.type, annotation=new_out.annotation | |
) | |
new_returns.append(new_ret) | |
else: | |
new_returns.append(r) | |
return new_returns, new_out_args | |
# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant | |
# Example before: | |
# _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950 | |
# Example after: | |
# _fused_moving_avg_obs_fq_helper._out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950 | |
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema: | |
# Generating an out= schema from a mutable schema. | |
assert func.kind() == SchemaKind.mutable | |
# The new out= schema has: | |
# - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments | |
# (if the argument is a tensor then we also return it for method chaining, | |
# otherwise we return nothing) | |
# - an "out" overload name | |
# | |
# Note that: | |
# (1) This also means that we can *only* generate an out= variant from a mutable schema | |
# if the mutable schema has at least one tensor-like non-aliasing return. | |
# (2) The generated out= variant still has mutable positional arguments, | |
# but if necessary we could probably add another out= variant that also | |
# functionalizes the mutable arguments (a functional_out variant) | |
new_returns, new_out_args = generate_out_args_from_schema(func) | |
return FunctionSchema( | |
name=func.name.remove_inplace().with_overload( | |
get_expected_out_variant_overload_name(func.name.overload_name) | |
), | |
arguments=func.arguments.with_out_args(new_out_args), | |
returns=tuple(new_returns), | |
) | |
# This function, given function of one SchemaKind, as well as a target SchemaKind, | |
# generates a new NativeFunction with the same properties, but using the target SchemaKind. | |
# We only actually generate functions for either functional or out= SchemaKinds. | |
# This function returns a tuple, with: | |
# - The generated NativeFunction | |
# - a dictionary of `BackendIndex` objects, describing which dispatch keys | |
# we will generate kernels for, for the new NativeFunction. | |
# Details are in the function, but we only generate composite kernels (in some cases) today. | |
def generate_function( | |
f: NativeFunction, k: SchemaKind | |
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]: | |
from torchgen.api import cpp | |
if k == SchemaKind.functional: | |
assert f.func.kind() != SchemaKind.functional | |
# The new "functional" NativeFunction has: | |
# - any mutable arguments have been converted into (immutable) returns. | |
# (if a mutable argument was not also a return, it gets converted to one) | |
# - "_functional" appended to the base name, ONLY IF this op has a mutable variant. | |
# See Note [Overload Ambiguity With Functional Variants] | |
# The default grouping logic in signature() actually already does this, | |
# so we can piggy-back off it (but we still want return names) | |
func = f.func.signature(keep_return_names=True).with_name( | |
OperatorName( | |
name=BaseOperatorName( | |
base=f.func.name.name.base, | |
inplace=False, | |
dunder_method=f.func.name.name.dunder_method, | |
# See Note [Overload Ambiguity With Functional Variants] | |
functional_overload=f.func.kind() == SchemaKind.mutable, | |
), | |
overload_name=f.func.name.overload_name, | |
) | |
) | |
elif k == SchemaKind.out: | |
# We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily, | |
# but at least today, there is no good reason to actually use them. | |
# we'll generate a dispatcher entry for them, but won't actually register any kernels for them. | |
if f.func.kind() == SchemaKind.inplace: | |
func = self_to_out_signature(f.func) | |
elif f.func.kind() == SchemaKind.mutable: | |
func = mutable_to_out_signature(f.func) | |
elif f.func.kind() == SchemaKind.functional: | |
func = functional_to_out_signature(f.func) | |
else: | |
raise AssertionError( | |
"We only bother generating out= functions from either inplace or mutable or functional variants" | |
) | |
else: | |
raise AssertionError( | |
"We currently only generate either functional or out= NativeFunctions" | |
) | |
# Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to | |
# disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and | |
# `randn.generator_with_names_out`. | |
kernel_name = ( | |
func.name.unambiguous_name() | |
if func.kind() == SchemaKind.out | |
else cpp.name(func) | |
) | |
if f.func.has_symint(): | |
kernel_name += "_symint" | |
backend_metadata = { | |
DispatchKey.CompositeExplicitAutograd: { | |
func.name: BackendMetadata( | |
kernel=kernel_name, | |
structured=False, | |
cpp_namespace=DEFAULT_KERNEL_NAMESPACE, | |
) | |
} | |
} | |
tags = {"generated"} | set( | |
f.tags & {"nondeterministic_seeded", "view_copy", "pt2_compliant_tag"} | |
) | |
return ( | |
NativeFunction( | |
func=func, | |
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors, | |
# These generated fn's aren't meant to be user friendly- don't generate methods. | |
variants={Variant.function}, | |
structured=False, | |
structured_delegate=None, | |
structured_inherits=None, | |
precomputed=None, | |
autogen=[], | |
ufunc_inner_loop={}, | |
manual_kernel_registration=False, | |
manual_cpp_binding=False, | |
python_module=None, | |
category_override=None, | |
device_guard=False, | |
device_check=DeviceCheckType.NoCheck, | |
loc=f.loc, | |
cpp_no_default_args=set(), | |
is_abstract=f.is_abstract, | |
has_composite_implicit_autograd_kernel=False, | |
has_composite_implicit_autograd_nested_tensor_kernel=False, | |
has_composite_explicit_autograd_kernel=True, | |
has_composite_explicit_autograd_non_functional_kernel=False, | |
# Every generated NativeFunction gets a "generated" tag, so it's easy to tell | |
# which NativeFunction objects did not come directly from native_functions.yaml. | |
tags=tags, | |
namespace=f.namespace, | |
), | |
backend_metadata, | |
) | |
# This function is responsible for adding generated NativeFunctions which don't appear | |
# explicitly in the codegen. | |
# You can inspect the full list of NativeFunctions yourself with the torchgen package, by running | |
# torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml") | |
# (Maybe we should make a friendly API for this) | |
# | |
# Note: this function *mutates* its two inputs, | |
# adding the new NativeFunctions / BackendMetadata to them | |
def add_generated_native_functions( | |
rs: List[NativeFunction], | |
indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]], | |
) -> None: | |
# The main code for generating new NativeFunctions | |
# First we group of NativeFunctions by schema kind, | |
# then we detect which ones are missing and generate them. | |
pre_grouped_native_functions = pre_group_native_functions(rs) | |
for d in pre_grouped_native_functions.values(): | |
has_functional = SchemaKind.functional in d | |
has_inplace = SchemaKind.inplace in d | |
has_mutable = SchemaKind.mutable in d | |
has_out = SchemaKind.out in d | |
# We automatically generate a few native functions that don't exist in the yaml, for a few reasons: | |
# (1) If an operator has an inplace/out= variant but no functional variant, we can generate | |
# a simple functional variant that the functionalization pass can consume. | |
# (2) If an operator has an inplace or functional but no out= variant, we generate an out= | |
# variant, mostly so we can easily pair up functions into NativeFunctionsGroup, | |
# while maintaining the constraint that the out= variant is "required". | |
if has_mutable or has_inplace or has_out or has_functional: | |
# Don't bother generating functions trio's for native functions that bypass the dispatcher. | |
are_manual = all(f.manual_cpp_binding for f in d.values()) | |
# Don't bother generating functional + out= variants for view operators | |
# set_ is technically an inplace_view, but for now it is treated | |
# as a normal inplace op in the codegen | |
has_view_ops = any( | |
f.is_view_op and str(f.func.name.name) != "set_" for f in d.values() | |
) | |
# Don't generate the other variants for CompositeImplicitAutograd operators. | |
# We could probably do this, but the main benefit of generating the function triplets | |
# is for transforms that need them, and transforms don't need to act directly | |
# on CompositeImplicitAutograd operators (since we let them decompose). | |
are_composite_implicit = all( | |
f.has_composite_implicit_autograd_kernel for f in d.values() | |
) | |
if are_manual or has_view_ops or are_composite_implicit: | |
continue | |
if has_out and len(d.values()) == 1: | |
# Note: [Out ops with functional variants that don't get grouped properly] | |
# In theory we could validly have an out= operator in native_functions.yaml | |
# that has no other variants. | |
# But today, all of the operators where that's the case actually do have | |
# functional variants, that we are just unable to pair up properly. | |
# I think banning this all together is probably safer | |
# (you can always add a functional variant yourself if you want to add a new out= operator). | |
# | |
# We should probably fix the existing cases; this check is to prevent us from adding more over time. | |
if ( | |
str(d[SchemaKind.out].func.name) | |
not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY | |
): | |
raise AssertionError( | |
f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}" | |
) | |
continue | |
# Some inplace ops that have problematic schemas (that we should fix), which prevent us | |
# from generating out= and functional variants | |
if ( | |
has_inplace | |
and str(d[SchemaKind.inplace].func.name) | |
in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY | |
): | |
continue | |
base_fn = ( | |
d[SchemaKind.inplace] | |
if has_inplace | |
else d[SchemaKind.mutable] | |
if has_mutable | |
else d[SchemaKind.out] | |
if has_out | |
else d[SchemaKind.functional] | |
) | |
# Note: [Mutable ops that cannot get an out variant] | |
# We can only generate an out= variant if either: | |
# - the original function has tensor-like returns (since we can convert them to out kwargs) | |
# - or it's inplace (since we can convert `self` to an out kwarg) | |
# There are only two functions that don't fit this criteria today though, | |
# and they both look like they should be fixed to be out= variants, | |
# so if feels safer to ban this schema all-together | |
base_fn_valid = base_fn.func.kind() == SchemaKind.inplace or any( | |
r.type.is_tensor_like() for r in base_fn.func.returns | |
) | |
# Note: [Loosen the assertion that all functional should have out variant] | |
# By design all functional operators should have our variants. The needs_out check | |
# is loosening this requirement, changing it to only generate out variant if there's | |
# an `autogen` block in the native function, in the long run it should be removed. | |
# FIXME: Remove this after figuring out CI job failures related to min, max, mean | |
needs_out = any("out" in str(op_name) for op_name in base_fn.autogen) | |
gets_out_variant = not has_out and base_fn_valid and needs_out | |
if not has_out and not base_fn_valid: | |
if ( | |
str(base_fn.func.name) | |
not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT | |
and str(base_fn.func.name) | |
not in FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT | |
): | |
raise AssertionError( | |
f"""Found an operator that we could not generate an out= variant for: {str(base_fn.func)}. | |
This type of operators don't have tensor-like return, making it difficult to generate a proper out= variant. If | |
out= variant is not needed, please add the function name into FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT list.""" | |
) | |
# Generate an out= variant | |
if gets_out_variant: | |
fn, metadata = generate_function(base_fn, SchemaKind.out) | |
d[SchemaKind.out] = fn | |
BackendIndex.grow_index(indices, metadata) | |
rs.append(fn) | |
# Generate a functional variant, but only do it if the operator got an out= variant | |
# (Functional variants are only useful if we can group up the variants, | |
# which we can only do if they have an out= variant) | |
if not has_functional and (has_out or gets_out_variant): | |
fn, metadata = generate_function(base_fn, SchemaKind.functional) | |
d[SchemaKind.functional] = fn | |
BackendIndex.grow_index(indices, metadata) | |
rs.append(fn) | |
def return_str(rets: Tuple[Return, ...], names: List[str]) -> str: | |
assert len(rets) == len(names) | |
if len(rets) == 0: | |
return "" | |
elif len(rets) == 1: | |
return f"return {names[0]};" | |
else: | |
return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});" | |
# Given a function, and the name of a variable corresponding to the output of that function, | |
# gather up all of the individual returns that are not aliased | |
def gather_nonaliased_inner_rets(func: FunctionSchema, out_var: str) -> List[str]: | |
aliased_rets = func.aliased_return_names() | |
non_aliased_names = [] | |
is_out_var_a_tuple = len(func.returns) > 1 | |
for i, r in enumerate(aliased_rets): | |
if r is None: | |
non_aliased_names.append( | |
f"std::get<{i}>({out_var})" if is_out_var_a_tuple else out_var | |
) | |
return non_aliased_names | |
# Generates functional kernels in terms of their inplace.mutable counterparts. | |
# We only do this for "generated" NativeFunctions | |
def gen_composite_functional_kernel(g: NativeFunctionsGroup) -> Optional[str]: | |
# We should only be generating these for code-generated NativeFunctions | |
if "generated" not in g.functional.tags: | |
return None | |
# And we always write the kernel for a generated op in terms of a non-generated op. | |
if g.inplace is not None and "generated" not in g.inplace.tags: | |
target_f = g.inplace | |
elif g.mutable is not None and "generated" not in g.mutable.tags: | |
target_f = g.mutable | |
else: | |
# We should be guaranteed to have a valid inplace/mutable variant to call into. | |
# See Note: [Mutable Ops Not Using Functionalization] | |
raise AssertionError(str(g.functional.func)) | |
sig = DispatcherSignature(g.functional.func) | |
target_sig = DispatcherSignature(target_f.func) | |
context: List[Union[Binding, Expr]] = [] | |
clone_mutable_inputs = [] | |
cloned_return_names = [] | |
# We can't just directly pass all of the arguments from the functional op into the mutating op. | |
# We need to check for which inputs to the mutating operator are mutable, | |
# and clone those inputs first. | |
for a_curr, a_tgt in zip( | |
dispatcher.jit_arguments(g.functional.func), | |
dispatcher.jit_arguments(target_f.func), | |
): | |
if a_tgt.annotation is not None and a_tgt.annotation.is_write: | |
clone_mutable_inputs.append( | |
f"auto {a_curr.name}_clone = clone_arg({a_curr.name});" | |
) | |
context.append( | |
Expr( | |
expr=f"{a_curr.name}_clone", | |
type=dispatcher.argument_type(a_curr, binds=a_curr.name), | |
) | |
) | |
# Invariant: mutable arguments on the inner mutable op are always returns on the functional op. | |
cloned_return_names.append(f"{a_curr.name}_clone") | |
else: | |
context.append(dispatcher.argument(a_curr)) | |
exprs = ", ".join([e.expr for e in translate(context, target_sig.arguments())]) | |
out_name = "output" | |
maybe_assign = f"auto {out_name} = " if len(target_f.func.returns) > 0 else "" | |
inner_return_names = gather_nonaliased_inner_rets(target_f.func, out_name) | |
ret_str = return_str( | |
g.functional.func.returns, inner_return_names + cloned_return_names | |
) | |
clone_mutable_inputs_str = "\n".join(clone_mutable_inputs) | |
return f""" | |
{sig.defn(name=sig.name() + ("_symint" if g.out.func.has_symint() else ""))} {{ | |
{clone_mutable_inputs_str} | |
{maybe_assign}at::_ops::{target_f.func.name.unambiguous_name()}::call({exprs}); | |
{ret_str} | |
}} | |
""" | |
# Generates out= kernels in terms of their functional counterparts. | |
# We only do this for "generated" NativeFunctions | |
def gen_composite_out_kernel(g: NativeFunctionsGroup) -> Optional[str]: | |
# We should only be generating these for code-generated NativeFunctions | |
if "generated" not in g.out.tags: | |
return None | |
# And we always write the kernel for the out= op in terms of the functional. | |
# Note that the functional op might have also been generated, but we don't have to | |
# worry about cycles, because the generated functional kernels are always implemented | |
# in terms of non-generated kernels (see gen_composite_functional_kernel). | |
sig = DispatcherSignature(g.out.func) | |
target_sig = DispatcherSignature(g.functional.func) | |
exprs = ", ".join( | |
[e.expr for e in translate(sig.arguments(), target_sig.arguments())] | |
) | |
copy_outs = [] | |
out_name = "tmp_output" | |
for i, out_arg in enumerate(g.out.func.arguments.out): | |
functional_return_name = ( | |
out_name | |
if len(g.functional.func.returns) == 1 | |
else f"std::get<{i}>({out_name})" | |
) | |
copy_outs.append( | |
f"""\ | |
resize_out_helper({out_arg.name}, {functional_return_name}); | |
copy_arg({out_arg.name}, {functional_return_name});""" | |
) | |
rets = [] | |
# For each return arg in the calling (out=) operator, | |
# If it corresponds to an aliased input, return the input. | |
# Otherwise, return the corresponding output from calling the functional operator. | |
for i, ret_name in enumerate(g.out.func.aliased_return_names()): | |
if ret_name is not None: | |
rets.append(ret_name) | |
else: | |
functional_return_name = ( | |
out_name | |
if len(g.functional.func.returns) == 1 | |
else f"std::get<{i}>({out_name})" | |
) | |
rets.append(functional_return_name) | |
copy_outs_str = "\n".join(copy_outs) | |
# Kernel name needs to follow the naming convention defined in `generate_function()` | |
return f""" | |
{sig.defn(name=g.out.func.name.unambiguous_name() + ("_symint" if g.out.func.has_symint() else ""))} {{ | |
auto {out_name} = at::_ops::{g.functional.func.name.unambiguous_name()}::call({exprs}); | |
{copy_outs_str} | |
{return_str(g.out.func.returns, rets)} | |
}} | |
""" | |