Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/image_processing_utils_fast.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import functools | |
from dataclasses import dataclass | |
from .image_processing_utils import BaseImageProcessor | |
from .utils.import_utils import is_torchvision_available | |
if is_torchvision_available(): | |
from torchvision.transforms import Compose | |
class SizeDict: | |
""" | |
Hashable dictionary to store image size information. | |
""" | |
height: int = None | |
width: int = None | |
longest_edge: int = None | |
shortest_edge: int = None | |
max_height: int = None | |
max_width: int = None | |
def __getitem__(self, key): | |
if hasattr(self, key): | |
return getattr(self, key) | |
raise KeyError(f"Key {key} not found in SizeDict.") | |
class BaseImageProcessorFast(BaseImageProcessor): | |
_transform_params = None | |
def _build_transforms(self, **kwargs) -> "Compose": | |
""" | |
Given the input settings e.g. do_resize, build the image transforms. | |
""" | |
raise NotImplementedError | |
def _validate_params(self, **kwargs) -> None: | |
for k, v in kwargs.items(): | |
if k not in self._transform_params: | |
raise ValueError(f"Invalid transform parameter {k}={v}.") | |
def get_transforms(self, **kwargs) -> "Compose": | |
self._validate_params(**kwargs) | |
return self._build_transforms(**kwargs) | |
def to_dict(self): | |
encoder_dict = super().to_dict() | |
encoder_dict.pop("_transform_params", None) | |
return encoder_dict | |