mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"HQQ (Half-Quadratic Quantization) integration file"
from ..utils import is_hqq_available, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
# Name all modules inside the model
def autoname_modules(model):
for name, module in model.named_modules():
module.name = name
# Get the linear_tag from a modul name. For example: model.layers.31.self_attn.k_proj -> self_attn.k_proj
def name_to_linear_tag(name):
return ".".join([n for n in name.split(".") if ((n not in ["model", "layers"]) and (not n.isnumeric()))])
# Get all linear tags available
def get_linear_tags(model):
if is_hqq_available():
from hqq.core.quantize import HQQLinear
linear_tags = set()
for name, module in model.named_modules():
if isinstance(module, (torch.nn.Linear, HQQLinear)):
linear_tags.add(name_to_linear_tag(name))
return list(linear_tags)
def _prepare_for_hqq_linear(model, patch_params, has_been_replaced, current_key_name=None):
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
current_key_name.append(name)
if isinstance(module, torch.nn.Linear):
# Get linear tag
linear_tag = name_to_linear_tag(module.name)
# We put the module quant_config into the nn.Linear layer so we can access it later in quantizer_hqq.create_quantized_param()
if linear_tag in patch_params:
if patch_params[linear_tag] is not None:
model._modules[name].quant_config = patch_params[linear_tag]
# Store the module class in case we need to transpose the weight later
model._modules[name].source_cls = type(module)
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
has_been_replaced = True
if len(list(module.children())) > 0:
_, has_been_replaced = _prepare_for_hqq_linear(
module,
patch_params=patch_params,
has_been_replaced=has_been_replaced,
)
# Remove the last key for recursion
current_key_name.pop(-1)
return model, has_been_replaced
def prepare_for_hqq_linear(model, quantization_config=None, modules_to_not_convert=None, has_been_replaced=False):
"""
Prepares nn.Linear layers for HQQ quantization.
Since each layer type can have separate quantization parameters, we need to do the following:
1- tag each module with its neme via autoname_modules()
2- Extract linear_tags (e.g. ['self_attn.q_proj', ...])
3- Map quantization parameters as a dictionary linear_tag -> quant_params as HQQLinear exepects it, this is referred to as patch_params
"""
modules_to_not_convert = [] if modules_to_not_convert is None else modules_to_not_convert
# Add name to module
autoname_modules(model)
# Get linear tags. This allows us to use different quant params to different layer types
linear_tags = get_linear_tags(model)
# Convert quantization_config to layer-wise config
skip_modules = quantization_config.skip_modules
quant_config = quantization_config.to_dict()
linear_tags = list(set(linear_tags) - set(skip_modules) - set(modules_to_not_convert))
if any(key in linear_tags for key in quant_config.keys()):
# If the user doesn't specify a key from get_linear_tags, the layer is not quantized via (key, None)
patch_params = {key: None for key in linear_tags}
patch_params.update(quant_config)
else:
# Same quant_config for all layers
patch_params = {k: quant_config for k in linear_tags}
model, has_been_replaced = _prepare_for_hqq_linear(
model, patch_params=patch_params, has_been_replaced=has_been_replaced
)
# We store quantization config as linear_tag -> hqq quant config
model.config.quantization_config = patch_params
if not has_been_replaced:
logger.warning("No linear modules were found in your model for quantization.")
return model