Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/modeling_attn_mask_utils.py
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
class AttentionMaskConverter: | |
""" | |
A utility attention mask class that allows one to: | |
- Create a causal 4d mask | |
- Create a causal 4d mask with slided window | |
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, | |
key_value_length) that can be multiplied with attention scores | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
>>> converter = AttentionMaskConverter(True) | |
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) | |
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | |
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | |
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | |
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38], | |
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]]) | |
``` | |
Parameters: | |
is_causal (`bool`): | |
Whether the attention mask should be a uni-directional (causal) or bi-directional mask. | |
sliding_window (`int`, *optional*): | |
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. | |
""" | |
is_causal: bool | |
sliding_window: int | |
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): | |
self.is_causal = is_causal | |
self.sliding_window = sliding_window | |
if self.sliding_window is not None and self.sliding_window <= 0: | |
raise ValueError( | |
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" | |
) | |
def to_causal_4d( | |
self, | |
batch_size: int, | |
query_length: int, | |
key_value_length: int, | |
dtype: torch.dtype, | |
device: Union[torch.device, "str"] = "cpu", | |
) -> Optional[torch.Tensor]: | |
""" | |
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative | |
bias to upper right hand triangular matrix (causal mask). | |
""" | |
if not self.is_causal: | |
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.") | |
# If shape is not cached, create a new causal mask and cache it | |
input_shape = (batch_size, query_length) | |
past_key_values_length = key_value_length - query_length | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
causal_4d_mask = None | |
if input_shape[-1] > 1 or self.sliding_window is not None: | |
causal_4d_mask = self._make_causal_mask( | |
input_shape, | |
dtype, | |
device=device, | |
past_key_values_length=past_key_values_length, | |
sliding_window=self.sliding_window, | |
) | |
return causal_4d_mask | |
def to_4d( | |
self, | |
attention_mask_2d: torch.Tensor, | |
query_length: int, | |
dtype: torch.dtype, | |
key_value_length: Optional[int] = None, | |
) -> torch.Tensor: | |
""" | |
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, | |
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is | |
causal, a causal mask will be added. | |
""" | |
input_shape = (attention_mask_2d.shape[0], query_length) | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
causal_4d_mask = None | |
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: | |
if key_value_length is None: | |
raise ValueError( | |
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." | |
) | |
past_key_values_length = key_value_length - query_length | |
causal_4d_mask = self._make_causal_mask( | |
input_shape, | |
dtype, | |
device=attention_mask_2d.device, | |
past_key_values_length=past_key_values_length, | |
sliding_window=self.sliding_window, | |
) | |
elif self.sliding_window is not None: | |
raise NotImplementedError("Sliding window is currently only implemented for causal masking") | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to( | |
attention_mask_2d.device | |
) | |
if causal_4d_mask is not None: | |
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min) | |
# expanded_attn_mask + causal_4d_mask can cause some overflow | |
expanded_4d_mask = expanded_attn_mask | |
return expanded_4d_mask | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
sliding_window: Optional[int] = None, | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
# add lower triangular sliding window mask if necessary | |
if sliding_window is not None: | |
diagonal = past_key_values_length - sliding_window - 1 | |
context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal) | |
mask.masked_fill_(context_mask, torch.finfo(dtype).min) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
def _unmask_unattended( | |
expanded_mask: torch.FloatTensor, | |
min_dtype: float, | |
): | |
# fmt: off | |
""" | |
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when | |
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
Details: https://github.com/pytorch/pytorch/issues/110213 | |
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. | |
`attention_mask` is [bsz, src_seq_len]. | |
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. | |
For example, if `expanded_mask` is (e.g. here left-padding case) | |
``` | |
[[[[0, 0, 0], | |
[0, 0, 0], | |
[0, 0, 1]]], | |
[[[1, 0, 0], | |
[1, 1, 0], | |
[1, 1, 1]]], | |
[[[0, 0, 0], | |
[0, 1, 0], | |
[0, 1, 1]]]] | |
``` | |
then the modified `expanded_mask` will be | |
``` | |
[[[[1, 1, 1], <-- modified | |
[1, 1, 1], <-- modified | |
[0, 0, 1]]], | |
[[[1, 0, 0], | |
[1, 1, 0], | |
[1, 1, 1]]], | |
[[[1, 1, 1], <-- modified | |
[0, 1, 0], | |
[0, 1, 1]]]] | |
``` | |
""" | |
# fmt: on | |
if expanded_mask.dtype == torch.bool: | |
raise ValueError( | |
"AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor." | |
) | |
return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True)) | |
def _ignore_causal_mask_sdpa( | |
attention_mask: Optional[torch.Tensor], | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
sliding_window: Optional[int] = None, | |
is_training: bool = False, | |
) -> bool: | |
""" | |
Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument. | |
In case no token is masked in the `attention_mask` argument, if `query_length == 1` or | |
`key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks, | |
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). | |
""" | |
_, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1] | |
key_value_length = query_length + past_key_values_length | |
is_tracing = ( | |
torch.jit.is_tracing() | |
or isinstance(inputs_embeds, torch.fx.Proxy) | |
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
) | |
ignore_causal_mask = False | |
if attention_mask is None: | |
# TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or | |
# or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108). | |
# Thus, we only set `ignore_causal_mask = True` if the model is set to training. | |
# | |
# Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor"). | |
if ( | |
(is_training or not is_tracing) | |
and (query_length == 1 or key_value_length == query_length) | |
and (sliding_window is None or key_value_length < sliding_window) | |
): | |
ignore_causal_mask = True | |
elif sliding_window is None or key_value_length < sliding_window: | |
if len(attention_mask.shape) == 4: | |
return False | |
elif (is_training or not is_tracing) and torch.all(attention_mask == 1): | |
if query_length == 1 or key_value_length == query_length: | |
# For query_length == 1, causal attention and bi-directional attention are the same. | |
ignore_causal_mask = True | |
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation | |
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. | |
# Reference: https://github.com/pytorch/pytorch/issues/108108 | |
# TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3. | |
return ignore_causal_mask | |
def _prepare_4d_causal_attention_mask( | |
attention_mask: Optional[torch.Tensor], | |
input_shape: Union[torch.Size, Tuple, List], | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
sliding_window: Optional[int] = None, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)` | |
Args: | |
attention_mask (`torch.Tensor` or `None`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` | |
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | |
The input shape should be a tuple that defines `(batch_size, query_length)`. | |
inputs_embeds (`torch.Tensor`): | |
The embedded inputs as a torch Tensor. | |
past_key_values_length (`int`): | |
The length of the key value cache. | |
sliding_window (`int`, *optional*): | |
If the model uses windowed attention, a sliding window should be passed. | |
""" | |
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | |
key_value_length = input_shape[-1] + past_key_values_length | |
# 4d mask is passed through the layers | |
if attention_mask is not None and len(attention_mask.shape) == 2: | |
attention_mask = attn_mask_converter.to_4d( | |
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype | |
) | |
elif attention_mask is not None and len(attention_mask.shape) == 4: | |
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | |
if tuple(attention_mask.shape) != expected_shape: | |
raise ValueError( | |
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | |
) | |
else: | |
# if the 4D mask has correct shape - invert it and fill with negative infinity | |
inverted_mask = 1.0 - attention_mask | |
attention_mask = inverted_mask.masked_fill( | |
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | |
) | |
else: | |
attention_mask = attn_mask_converter.to_causal_4d( | |
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device | |
) | |
return attention_mask | |
# Adapted from _prepare_4d_causal_attention_mask | |
def _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask: Optional[torch.Tensor], | |
input_shape: Union[torch.Size, Tuple, List], | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
sliding_window: Optional[int] = None, | |
): | |
""" | |
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`. | |
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and | |
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks, | |
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). | |
""" | |
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | |
key_value_length = input_shape[-1] + past_key_values_length | |
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1` | |
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing. | |
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). | |
is_tracing = ( | |
torch.jit.is_tracing() | |
or isinstance(inputs_embeds, torch.fx.Proxy) | |
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
) | |
ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
sliding_window=sliding_window, | |
) | |
if ignore_causal_mask: | |
expanded_4d_mask = None | |
elif attention_mask is None: | |
expanded_4d_mask = attn_mask_converter.to_causal_4d( | |
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device | |
) | |
else: | |
if attention_mask.dim() == 4: | |
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing | |
if attention_mask.max() != 0: | |
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") | |
expanded_4d_mask = attention_mask | |
else: | |
expanded_4d_mask = attn_mask_converter.to_4d( | |
attention_mask, | |
input_shape[-1], | |
dtype=inputs_embeds.dtype, | |
key_value_length=key_value_length, | |
) | |
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
if not is_tracing and expanded_4d_mask.device.type == "cuda": | |
expanded_4d_mask = AttentionMaskConverter._unmask_unattended( | |
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min | |
) | |
return expanded_4d_mask | |
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)` | |
Args: | |
mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` | |
dtype (`torch.dtype`): | |
The torch dtype the created mask shall have. | |
tgt_len (`int`): | |
The target length or query length the created mask shall have. | |
""" | |
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | |
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)` | |
Args: | |
mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` | |
dtype (`torch.dtype`): | |
The torch dtype the created mask shall have. | |
tgt_len (`int`): | |
The target length or query length the created mask shall have. | |
""" | |
_, key_value_length = mask.shape | |
tgt_len = tgt_len if tgt_len is not None else key_value_length | |
is_tracing = ( | |
torch.jit.is_tracing() | |
or isinstance(mask, torch.fx.Proxy) | |
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
) | |
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture data-dependent controlflows. | |
if not is_tracing and torch.all(mask == 1): | |
return None | |
else: | |
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | |
def _create_4d_causal_attention_mask( | |
input_shape: Union[torch.Size, Tuple, List], | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0, | |
sliding_window: Optional[int] = None, | |
) -> Optional[torch.Tensor]: | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` | |
Args: | |
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | |
The input shape should be a tuple that defines `(batch_size, query_length)`. | |
dtype (`torch.dtype`): | |
The torch dtype the created mask shall have. | |
device (`int`): | |
The torch device the created mask shall have. | |
sliding_window (`int`, *optional*): | |
If the model uses windowed attention, a sliding window should be passed. | |
""" | |
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) | |
key_value_length = past_key_values_length + input_shape[-1] | |
attention_mask = attn_mask_converter.to_causal_4d( | |
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device | |
) | |
return attention_mask | |