Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/align
/processing_align.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Image/Text processor class for ALIGN | |
""" | |
from typing import List, Union | |
try: | |
from typing import Unpack | |
except ImportError: | |
from typing_extensions import Unpack | |
from ...image_utils import ImageInput | |
from ...processing_utils import ( | |
ProcessingKwargs, | |
ProcessorMixin, | |
) | |
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput | |
class AlignProcessorKwargs(ProcessingKwargs, total=False): | |
# see processing_utils.ProcessingKwargs documentation for usage. | |
_defaults = { | |
"text_kwargs": { | |
"padding": "max_length", | |
"max_length": 64, | |
}, | |
} | |
class AlignProcessor(ProcessorMixin): | |
r""" | |
Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and | |
[`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and | |
tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more | |
information. | |
The preferred way of passing kwargs is as a dictionary per modality, see usage example below. | |
```python | |
from transformers import AlignProcessor | |
from PIL import Image | |
model_id = "kakaobrain/align-base" | |
processor = AlignProcessor.from_pretrained(model_id) | |
processor( | |
images=your_pil_image, | |
text=["What is that?"], | |
images_kwargs = {"crop_size": {"height": 224, "width": 224}}, | |
text_kwargs = {"padding": "do_not_pad"}, | |
common_kwargs = {"return_tensors": "pt"}, | |
) | |
``` | |
Args: | |
image_processor ([`EfficientNetImageProcessor`]): | |
The image processor is a required input. | |
tokenizer ([`BertTokenizer`, `BertTokenizerFast`]): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "EfficientNetImageProcessor" | |
tokenizer_class = ("BertTokenizer", "BertTokenizerFast") | |
def __init__(self, image_processor, tokenizer): | |
super().__init__(image_processor, tokenizer) | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
images: ImageInput = None, | |
audio=None, | |
videos=None, | |
**kwargs: Unpack[AlignProcessorKwargs], | |
) -> BatchEncoding: | |
""" | |
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text` | |
arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` arguments to | |
EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer | |
to the doctsring of the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. Both channels-first and channels-last formats are supported. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
""" | |
if text is None and images is None: | |
raise ValueError("You must specify either text or images.") | |
output_kwargs = self._merge_kwargs( | |
AlignProcessorKwargs, | |
tokenizer_init_kwargs=self.tokenizer.init_kwargs, | |
**kwargs, | |
) | |
# then, we can pass correct kwargs to each processor | |
if text is not None: | |
encoding = self.tokenizer(text, **output_kwargs["text_kwargs"]) | |
if images is not None: | |
image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) | |
# BC for explicit return_tensors | |
if "return_tensors" in output_kwargs["common_kwargs"]: | |
return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None) | |
if text is not None and images is not None: | |
encoding["pixel_values"] = image_features.pixel_values | |
return encoding | |
elif text is not None: | |
return encoding | |
else: | |
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |