mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for ALIGN
"""
from typing import List, Union
try:
from typing import Unpack
except ImportError:
from typing_extensions import Unpack
from ...image_utils import ImageInput
from ...processing_utils import (
ProcessingKwargs,
ProcessorMixin,
)
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
class AlignProcessorKwargs(ProcessingKwargs, total=False):
# see processing_utils.ProcessingKwargs documentation for usage.
_defaults = {
"text_kwargs": {
"padding": "max_length",
"max_length": 64,
},
}
class AlignProcessor(ProcessorMixin):
r"""
Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
[`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
information.
The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
```python
from transformers import AlignProcessor
from PIL import Image
model_id = "kakaobrain/align-base"
processor = AlignProcessor.from_pretrained(model_id)
processor(
images=your_pil_image,
text=["What is that?"],
images_kwargs = {"crop_size": {"height": 224, "width": 224}},
text_kwargs = {"padding": "do_not_pad"},
common_kwargs = {"return_tensors": "pt"},
)
```
Args:
image_processor ([`EfficientNetImageProcessor`]):
The image processor is a required input.
tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "EfficientNetImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
audio=None,
videos=None,
**kwargs: Unpack[AlignProcessorKwargs],
) -> BatchEncoding:
"""
Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` arguments to
EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
to the doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You must specify either text or images.")
output_kwargs = self._merge_kwargs(
AlignProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
# then, we can pass correct kwargs to each processor
if text is not None:
encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
# BC for explicit return_tensors
if "return_tensors" in output_kwargs["common_kwargs"]:
return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))