Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/clvp
/processing_clvp.py
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for CLVP | |
""" | |
from ...processing_utils import ProcessorMixin | |
class ClvpProcessor(ProcessorMixin): | |
r""" | |
Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor. | |
[`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the | |
[`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information. | |
Args: | |
feature_extractor (`ClvpFeatureExtractor`): | |
An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`ClvpTokenizer`): | |
An instance of [`ClvpTokenizer`]. The tokenizer is a required input. | |
""" | |
feature_extractor_class = "ClvpFeatureExtractor" | |
tokenizer_class = "ClvpTokenizer" | |
model_input_names = [ | |
"input_ids", | |
"input_features", | |
"attention_mask", | |
] | |
def __init__(self, feature_extractor, tokenizer): | |
super().__init__(feature_extractor, tokenizer) | |
def __call__(self, *args, **kwargs): | |
""" | |
Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text` | |
argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more | |
information. | |
""" | |
raw_speech = kwargs.pop("raw_speech", None) | |
sampling_rate = kwargs.pop("sampling_rate", None) | |
text = kwargs.pop("text", None) | |
if raw_speech is None and text is None: | |
raise ValueError("You need to specify either an `raw_speech` or `text` input to process.") | |
if raw_speech is not None: | |
inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs) | |
if text is not None: | |
encodings = self.tokenizer(text, **kwargs) | |
if text is None: | |
return inputs | |
elif raw_speech is None: | |
return encodings | |
else: | |
inputs["input_ids"] = encodings["input_ids"] | |
inputs["attention_mask"] = encodings["attention_mask"] | |
return inputs | |
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |