Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/dbrx
/modeling_dbrx.py
# coding=utf-8 | |
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch DBRX model.""" | |
import math | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...cache_utils import Cache, DynamicCache, StaticCache | |
from ...modeling_attn_mask_utils import AttentionMaskConverter | |
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_dbrx import DbrxConfig | |
if is_flash_attn_2_available(): | |
from ...modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "DbrxConfig" | |
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
min_dtype: float, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
min_dtype (`float`): | |
The minimum value representable with the dtype `dtype`. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
return causal_mask | |
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx | |
class DbrxRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) | |
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) | |
def forward(self, x, position_ids, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
self.inv_freq.to(x.device) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def load_balancing_loss_func( | |
gate_logits: torch.Tensor, | |
num_experts: int, | |
top_k: int, | |
attention_mask: Optional[torch.Tensor], | |
) -> torch.Tensor: | |
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
experts is too unbalanced. | |
Args: | |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | |
shape [batch_size X sequence_length, num_experts]. | |
num_experts (`int`): | |
Number of experts. | |
top_k (`int`): | |
The number of experts each token is routed to. | |
attention_mask (`torch.Tensor`, *optional*): | |
The attention_mask used in forward function | |
shape [batch_size X sequence_length] if not None. | |
Returns: | |
The auxiliary loss. | |
""" | |
if gate_logits is None or not isinstance(gate_logits, tuple): | |
return torch.tensor(0.0) | |
if isinstance(gate_logits, tuple): | |
compute_device = gate_logits[0].device | |
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | |
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
if attention_mask is None: | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.mean(routing_weights, dim=0) | |
else: | |
batch_size, sequence_length = attention_mask.shape | |
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask | |
expert_attention_mask = ( | |
attention_mask[None, :, :, None, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | |
.reshape(-1, top_k, num_experts) | |
.to(compute_device) | |
) | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | |
expert_attention_mask, dim=0 | |
) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert | |
router_per_expert_attention_mask = ( | |
attention_mask[None, :, :, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | |
.reshape(-1, num_experts) | |
.to(compute_device) | |
) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | |
router_per_expert_attention_mask, dim=0 | |
) | |
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | |
return overall_loss * num_experts | |
class DbrxAttention(nn.Module): | |
"""Multi-head self attention.""" | |
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.d_model | |
self.num_heads = config.n_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.max_position_embeddings = config.max_seq_len | |
self.block_idx = block_idx | |
if block_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will " | |
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` " | |
+ "when creating this class." | |
) | |
attn_config = config.attn_config | |
self.attn_pdrop = attn_config.attn_pdrop | |
self.clip_qkv = attn_config.clip_qkv | |
self.num_key_value_heads = attn_config.kv_n_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.rope_theta = attn_config.rope_theta | |
self.is_causal = True | |
self.Wqkv = nn.Linear( | |
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False | |
) | |
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.rotary_emb = DbrxRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Any, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.Wqkv(hidden_states) | |
min_val = -self.clip_qkv if self.clip_qkv is not None else None | |
max_val = self.clip_qkv | |
qkv_states = qkv_states.clamp(min=min_val, max=max_val) | |
query_states, key_states, value_states = qkv_states.split( | |
[ | |
self.hidden_size, | |
self.num_key_value_heads * self.head_dim, | |
self.num_key_value_heads * self.head_dim, | |
], | |
dim=2, | |
) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; position_ids needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
+ f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class DbrxFlashAttention2(DbrxAttention): | |
"""Dbrx flash attention module. | |
This module inherits from `DbrxAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it | |
calls the public API of flash attention. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Any, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if isinstance(past_key_value, StaticCache): | |
raise ValueError( | |
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " | |
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" | |
) | |
logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.") | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.Wqkv(hidden_states) | |
if self.clip_qkv is not None: | |
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) | |
query_states, key_states, value_states = qkv_states.split( | |
[ | |
self.hidden_size, | |
self.num_key_value_heads * self.head_dim, | |
self.num_key_value_heads * self.head_dim, | |
], | |
dim=2, | |
) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout | |
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attn_pdrop if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = query_states.dtype | |
logger.warning_once( | |
"The input hidden states seems to be silently casted in float32, this might be " | |
+ "related to the fact you have upcasted embedding or layer norm layers in " | |
+ f"float32. We will cast back the input in {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
position_ids=position_ids, | |
dropout=dropout_rate, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class DbrxSdpaAttention(DbrxAttention): | |
""" | |
Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
qkv_states = self.Wqkv(hidden_states) | |
if self.clip_qkv is not None: | |
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv) | |
query_states, key_states, value_states = qkv_states.split( | |
[ | |
self.hidden_size, | |
self.num_key_value_heads * self.head_dim, | |
self.num_key_value_heads * self.head_dim, | |
], | |
dim=2, | |
) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: | |
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and causal_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attn_pdrop if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, -1) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
DBRX_ATTENTION_CLASSES = { | |
"eager": DbrxAttention, | |
"flash_attention_2": DbrxFlashAttention2, | |
"sdpa": DbrxSdpaAttention, | |
} | |
class DbrxNormAttentionNorm(nn.Module): | |
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None): | |
super().__init__() | |
self.block_idx = block_idx | |
self.resid_pdrop = config.resid_pdrop | |
self.norm_1 = nn.LayerNorm(config.d_model, bias=False) | |
self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation]( | |
config=config, | |
block_idx=block_idx, | |
) | |
self.norm_2 = nn.LayerNorm(config.d_model, bias=False) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Any, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: | |
residual_states = hidden_states | |
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype) | |
hidden_states, attn_weights, past_key_value = self.attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
**kwargs, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training) | |
hidden_states = hidden_states + residual_states | |
residual_states = hidden_states | |
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype) | |
return residual_states, hidden_states, attn_weights, past_key_value | |
class DbrxRouter(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
moe_num_experts: int, | |
moe_top_k: int, | |
moe_jitter_eps: Optional[float], | |
moe_normalize_expert_weights: Optional[float], | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.moe_num_experts = moe_num_experts | |
self.moe_top_k = moe_top_k | |
self.moe_jitter_eps = moe_jitter_eps | |
self.moe_normalize_expert_weights = moe_normalize_expert_weights | |
self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False) | |
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]: | |
if self.training and self.moe_jitter_eps is not None: | |
hidden_states *= torch.empty_like(hidden_states).uniform_( | |
1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps | |
) | |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | |
weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32) | |
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1) | |
top_weights_scale = ( | |
torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True) | |
if self.moe_normalize_expert_weights is not None | |
else 1.0 | |
) | |
top_weights = top_weights / top_weights_scale | |
weights = weights.to(hidden_states.dtype) | |
top_weights = top_weights.to(hidden_states.dtype) | |
return weights, top_weights, top_experts | |
class DbrxExpertGLU(nn.Module): | |
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.ffn_hidden_size = ffn_hidden_size | |
self.moe_num_experts = moe_num_experts | |
self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) | |
self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) | |
self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size)) | |
act_fn_name = ffn_act_fn.get("name", "silu") | |
self.activation_fn = ACT2FN[act_fn_name] | |
def forward( | |
self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor | |
) -> torch.Tensor: | |
gate_proj = x.matmul(expert_w1.t()) | |
up_proj = x.matmul(expert_v1.t()) | |
gate_proj = self.activation_fn(gate_proj) | |
intermediate_states = gate_proj * up_proj | |
down_proj = intermediate_states.matmul(expert_w2) | |
return down_proj | |
class DbrxExperts(nn.Module): | |
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict): | |
super().__init__() | |
self.moe_num_experts = moe_num_experts | |
self.mlp = DbrxExpertGLU( | |
hidden_size=hidden_size, | |
ffn_hidden_size=ffn_hidden_size, | |
moe_num_experts=moe_num_experts, | |
ffn_act_fn=ffn_act_fn, | |
) | |
def forward( | |
self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor | |
) -> torch.Tensor: | |
bsz, q_len, hidden_size = x.shape | |
x = x.view(-1, hidden_size) | |
out = torch.zeros_like(x) | |
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0) | |
# Chunk experts at once to avoid storing full parameter multiple times in autograd | |
w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( | |
self.moe_num_experts, dim=0 | |
) | |
v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( | |
self.moe_num_experts, dim=0 | |
) | |
w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk( | |
self.moe_num_experts, dim=0 | |
) | |
w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked] | |
v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked] | |
w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked] | |
for expert_idx in range(0, self.moe_num_experts): | |
topk_idx, token_idx = torch.where(expert_mask[expert_idx]) | |
if token_idx.shape[0] == 0: | |
continue | |
token_list = token_idx | |
topk_list = topk_idx | |
expert_tokens = x[None, token_list].reshape(-1, hidden_size) | |
expert_out = ( | |
self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx]) | |
* top_weights[token_list, topk_list, None] | |
) | |
out.index_add_(0, token_idx, expert_out) | |
out = out.reshape(bsz, q_len, hidden_size) | |
return out | |
class DbrxFFN(nn.Module): | |
def __init__(self, config: DbrxConfig): | |
super().__init__() | |
ffn_config = config.ffn_config | |
self.router = DbrxRouter( | |
hidden_size=config.d_model, | |
moe_num_experts=ffn_config.moe_num_experts, | |
moe_top_k=ffn_config.moe_top_k, | |
moe_jitter_eps=ffn_config.moe_jitter_eps, | |
moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights, | |
) | |
self.experts = DbrxExperts( | |
hidden_size=config.d_model, | |
ffn_hidden_size=ffn_config.ffn_hidden_size, | |
moe_num_experts=ffn_config.moe_num_experts, | |
ffn_act_fn=ffn_config.ffn_act_fn, | |
) | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
weights, top_weights, top_experts = self.router(x) | |
out = self.experts(x, weights, top_weights, top_experts) | |
return out, weights | |
class DbrxBlock(nn.Module): | |
def __init__(self, config: DbrxConfig, block_idx: int): | |
super().__init__() | |
self.hidden_size = config.d_model | |
self.resid_pdrop = config.resid_pdrop | |
self.block_idx = block_idx | |
self.norm_attn_norm = DbrxNormAttentionNorm( | |
config=config, | |
block_idx=block_idx, | |
) | |
self.ffn = DbrxFFN(config=config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: torch.LongTensor = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: Optional[bool] = False, | |
output_router_logits: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Any, | |
) -> Union[ | |
Tuple[torch.Tensor], | |
Tuple[torch.Tensor, Optional[torch.Tensor]], | |
Tuple[torch.Tensor, Optional[Cache]], | |
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]], | |
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]], | |
Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]], | |
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]], | |
]: | |
"""Forward function for DbrxBlock. | |
Args: | |
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)` | |
attention_mask (`torch.Tensor`, *optional*): attention mask of size (batch_size, sequence_length) | |
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length) | |
if default attention is used. | |
past_key_value (`Tuple(torch.Tensor)`, *optional*): cached past key and value projection states | |
output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all | |
attention layers. See `attentions` under returned tensors for more detail. | |
output_router_logits (`bool`, *optional*): Whether or not to return the router logits. | |
use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are | |
returned and can be used to speed up decoding (see `past_key_values`). | |
cache_position (`torch.LongTensor`, *optional*): position ids of the cache | |
""" | |
# Norm + Attention + Norm | |
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
**kwargs, | |
) | |
# Fully Connected | |
hidden_states, router_logits = self.ffn(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training) | |
hidden_states = resid_states + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
if output_router_logits: | |
outputs += (router_logits,) | |
return outputs | |
DBRX_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`DbrxConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class DbrxPreTrainedModel(PreTrainedModel): | |
config_class = DbrxConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DbrxBlock"] | |
_skip_keys_device_placement = ["past_key_values"] | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
_supports_quantized_cache = True | |
_supports_static_cache = True | |
def _init_weights(self, module: nn.Module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, DbrxExpertGLU): | |
module.w1.data.normal_(mean=0.0, std=std) | |
module.v1.data.normal_(mean=0.0, std=std) | |
module.w2.data.normal_(mean=0.0, std=std) | |
DBRX_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | |
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | |
the complete sequence length. | |
""" | |
class DbrxModel(DbrxPreTrainedModel): | |
"""Transformer decoder consisting of *config.num_hidden_layers*. Each layer is a [`DbrxBlock`] layer. | |
Args: | |
config ([`DbrxConfig`]): Model configuration class with all parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
def __init__(self, config: DbrxConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.emb_pdrop = config.emb_pdrop | |
self.wte = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
self.blocks = nn.ModuleList([DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)]) | |
self.norm_f = nn.LayerNorm(config.d_model, bias=False) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.wte | |
def set_input_embeddings(self, value: nn.Embedding): | |
self.wte = value | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Cache] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if self.gradient_checkpointing and self.training and use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
) | |
use_cache = False | |
if inputs_embeds is None: | |
inputs_embeds = self.wte(input_ids) | |
inputs_embeds = nn.functional.dropout(inputs_embeds, p=self.emb_pdrop, training=self.training) | |
return_legacy_cache = False | |
if ( | |
use_cache and not isinstance(past_key_values, Cache) and not self.training | |
): # kept for BC (non `Cache` `past_key_values` inputs) | |
return_legacy_cache = True | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
logger.warning_once( | |
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " | |
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" | |
) | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
causal_mask = self._update_causal_mask( | |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
) | |
# embed positions | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_router_logits = () if output_router_logits else None | |
next_decoder_cache = None | |
for block in self.blocks: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
block_outputs = self._gradient_checkpointing_func( | |
block.__call__, | |
hidden_states, | |
causal_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
output_router_logits, | |
use_cache, | |
cache_position, | |
) | |
else: | |
block_outputs = block( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
output_router_logits=output_router_logits, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = block_outputs[0] | |
if use_cache: | |
next_decoder_cache = block_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (block_outputs[1],) | |
if output_router_logits: | |
all_router_logits += (block_outputs[-1],) | |
hidden_states = self.norm_f(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if return_legacy_cache: | |
next_cache = next_cache.to_legacy_cache() | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] | |
if v is not None | |
) | |
return MoeModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
router_logits=all_router_logits, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
class DbrxForCausalLM(DbrxPreTrainedModel): | |
def __init__(self, config: DbrxConfig): | |
super().__init__(config) | |
self.transformer = DbrxModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.moe_loss_weight = config.ffn_config.moe_loss_weight | |
self.num_experts = config.ffn_config.moe_num_experts | |
self.num_experts_per_tok = config.ffn_config.moe_top_k | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Embedding: | |
return self.transformer.get_input_embeddings() | |
def set_input_embeddings(self, value: nn.Embedding): | |
self.transformer.set_input_embeddings(value) | |
def get_output_embeddings(self) -> nn.Linear: | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings: nn.Linear): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder: DbrxModel): | |
self.transformer = decoder | |
def get_decoder(self) -> DbrxModel: | |
return self.transformer | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Cache] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeCausalLMOutputWithPast]: | |
r"""Forward function for causal language modeling. | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>> from transformers import AutoTokenizer, DbrxForCausalLM | |
>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx-instruct") | |
>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct") | |
>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>> inputs = tokenizer(prompt, return_tensors="pt") | |
>> # Generate | |
>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
``` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.transformer( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
output_router_logits=output_router_logits, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
aux_loss = None | |
if output_router_logits: | |
aux_loss = load_balancing_loss_func( | |
outputs.router_logits if return_dict else outputs[-1], | |
self.num_experts, | |
self.num_experts_per_tok, | |
attention_mask, | |
) | |
if labels is not None and loss is not None: | |
loss += self.moe_loss_weight * aux_loss.to(loss.device) # make sure to reside in the same device | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
if output_router_logits: | |
output = (aux_loss,) + output | |
return (loss,) + output if loss is not None else output | |
return MoeCausalLMOutputWithPast( | |
loss=loss, | |
aux_loss=aux_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
router_logits=outputs.router_logits, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
cache_position=None, | |
position_ids=None, | |
use_cache=True, | |
**kwargs, | |
): | |
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
# Exception 1: when passing input_embeds, input_ids may be missing entries | |
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
if past_key_values is not None: | |
if inputs_embeds is not None: # Exception 1 | |
input_ids = input_ids[:, -cache_position.shape[0] :] | |
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
input_ids = input_ids[:, cache_position] | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. | |
position_ids = position_ids.clone(memory_format=torch.contiguous_format) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and cache_position[0] == 0: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | |
if inputs_embeds is not None: | |
batch_size, sequence_length = inputs_embeds.shape | |
device = inputs_embeds.device | |
else: | |
batch_size, sequence_length = input_ids.shape | |
device = input_ids.device | |
dtype = self.lm_head.weight.dtype | |
min_dtype = torch.finfo(dtype).min | |
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=past_key_values.get_max_length(), | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=batch_size, | |
) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"cache_position": cache_position, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |