Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/dinat
/modeling_dinat.py
# coding=utf-8 | |
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Dilated Neighborhood Attention Transformer model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BackboneOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
OptionalDependencyNotAvailable, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_natten_available, | |
logging, | |
replace_return_docstrings, | |
requires_backends, | |
) | |
from ...utils.backbone_utils import BackboneMixin | |
from .configuration_dinat import DinatConfig | |
if is_natten_available(): | |
from natten.functional import natten2dav, natten2dqkrpb | |
else: | |
def natten2dqkrpb(*args, **kwargs): | |
raise OptionalDependencyNotAvailable() | |
def natten2dav(*args, **kwargs): | |
raise OptionalDependencyNotAvailable() | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "DinatConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224" | |
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
# drop_path and DinatDropPath are from the timm library. | |
class DinatEncoderOutput(ModelOutput): | |
""" | |
Dinat encoder's outputs, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class DinatModelOutput(ModelOutput): | |
""" | |
Dinat model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): | |
Average pooling of the last layer hidden-state. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class DinatImageClassifierOutput(ModelOutput): | |
""" | |
Dinat outputs for image classification. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class DinatEmbeddings(nn.Module): | |
""" | |
Construct the patch and position embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.patch_embeddings = DinatPatchEmbeddings(config) | |
self.norm = nn.LayerNorm(config.embed_dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]: | |
embeddings = self.patch_embeddings(pixel_values) | |
embeddings = self.norm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class DinatPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
patch_size = config.patch_size | |
num_channels, hidden_size = config.num_channels, config.embed_dim | |
self.num_channels = num_channels | |
if patch_size == 4: | |
pass | |
else: | |
# TODO: Support arbitrary patch sizes. | |
raise ValueError("Dinat only supports patch size of 4 at the moment.") | |
self.projection = nn.Sequential( | |
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), | |
) | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor: | |
_, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
embeddings = self.projection(pixel_values) | |
embeddings = embeddings.permute(0, 2, 3, 1) | |
return embeddings | |
class DinatDownsampler(nn.Module): | |
""" | |
Convolutional Downsampling Layer. | |
Args: | |
dim (`int`): | |
Number of input channels. | |
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): | |
Normalization layer class. | |
""" | |
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: | |
super().__init__() | |
self.dim = dim | |
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) | |
self.norm = norm_layer(2 * dim) | |
def forward(self, input_feature: torch.Tensor) -> torch.Tensor: | |
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
input_feature = self.norm(input_feature) | |
return input_feature | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat | |
class DinatDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class NeighborhoodAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, kernel_size, dilation): | |
super().__init__() | |
if dim % num_heads != 0: | |
raise ValueError( | |
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" | |
) | |
self.num_attention_heads = num_heads | |
self.attention_head_size = int(dim / num_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.kernel_size = kernel_size | |
self.dilation = dilation | |
# rpb is learnable relative positional biases; same concept is used Swin. | |
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1))) | |
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 3, 1, 2, 4) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
query_layer = self.transpose_for_scores(self.query(hidden_states)) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
# Apply the scale factor before computing attention weights. It's usually more efficient because | |
# attention weights are typically a bigger tensor compared to query. | |
# It gives identical results because scalars are commutable in matrix multiplication. | |
query_layer = query_layer / math.sqrt(self.attention_head_size) | |
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases. | |
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation) | |
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class NeighborhoodAttentionOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class NeighborhoodAttentionModule(nn.Module): | |
def __init__(self, config, dim, num_heads, kernel_size, dilation): | |
super().__init__() | |
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation) | |
self.output = NeighborhoodAttentionOutput(config, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class DinatIntermediate(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class DinatOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class DinatLayer(nn.Module): | |
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.kernel_size = config.kernel_size | |
self.dilation = dilation | |
self.window_size = self.kernel_size * self.dilation | |
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.attention = NeighborhoodAttentionModule( | |
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation | |
) | |
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.intermediate = DinatIntermediate(config, dim) | |
self.output = DinatOutput(config, dim) | |
self.layer_scale_parameters = ( | |
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True) | |
if config.layer_scale_init_value > 0 | |
else None | |
) | |
def maybe_pad(self, hidden_states, height, width): | |
window_size = self.window_size | |
pad_values = (0, 0, 0, 0, 0, 0) | |
if height < window_size or width < window_size: | |
pad_l = pad_t = 0 | |
pad_r = max(0, window_size - width) | |
pad_b = max(0, window_size - height) | |
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b) | |
hidden_states = nn.functional.pad(hidden_states, pad_values) | |
return hidden_states, pad_values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
batch_size, height, width, channels = hidden_states.size() | |
shortcut = hidden_states | |
hidden_states = self.layernorm_before(hidden_states) | |
# pad hidden_states if they are smaller than kernel size x dilation | |
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) | |
_, height_pad, width_pad, _ = hidden_states.shape | |
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions) | |
attention_output = attention_outputs[0] | |
was_padded = pad_values[3] > 0 or pad_values[5] > 0 | |
if was_padded: | |
attention_output = attention_output[:, :height, :width, :].contiguous() | |
if self.layer_scale_parameters is not None: | |
attention_output = self.layer_scale_parameters[0] * attention_output | |
hidden_states = shortcut + self.drop_path(attention_output) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.output(self.intermediate(layer_output)) | |
if self.layer_scale_parameters is not None: | |
layer_output = self.layer_scale_parameters[1] * layer_output | |
layer_output = hidden_states + self.drop_path(layer_output) | |
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) | |
return layer_outputs | |
class DinatStage(nn.Module): | |
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample): | |
super().__init__() | |
self.config = config | |
self.dim = dim | |
self.layers = nn.ModuleList( | |
[ | |
DinatLayer( | |
config=config, | |
dim=dim, | |
num_heads=num_heads, | |
dilation=dilations[i], | |
drop_path_rate=drop_path_rate[i], | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm) | |
else: | |
self.downsample = None | |
self.pointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
_, height, width, _ = hidden_states.size() | |
for i, layer_module in enumerate(self.layers): | |
layer_outputs = layer_module(hidden_states, output_attentions) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = hidden_states | |
if self.downsample is not None: | |
hidden_states = self.downsample(hidden_states_before_downsampling) | |
stage_outputs = (hidden_states, hidden_states_before_downsampling) | |
if output_attentions: | |
stage_outputs += layer_outputs[1:] | |
return stage_outputs | |
class DinatEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.num_levels = len(config.depths) | |
self.config = config | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
self.levels = nn.ModuleList( | |
[ | |
DinatStage( | |
config=config, | |
dim=int(config.embed_dim * 2**i_layer), | |
depth=config.depths[i_layer], | |
num_heads=config.num_heads[i_layer], | |
dilations=config.dilations[i_layer], | |
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], | |
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None, | |
) | |
for i_layer in range(self.num_levels) | |
] | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
output_hidden_states_before_downsampling: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, DinatEncoderOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_reshaped_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
if output_hidden_states: | |
# rearrange b h w c -> b c h w | |
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
for i, layer_module in enumerate(self.levels): | |
layer_outputs = layer_module(hidden_states, output_attentions) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = layer_outputs[1] | |
if output_hidden_states and output_hidden_states_before_downsampling: | |
# rearrange b h w c -> b c h w | |
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states_before_downsampling,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
elif output_hidden_states and not output_hidden_states_before_downsampling: | |
# rearrange b h w c -> b c h w | |
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
if output_attentions: | |
all_self_attentions += layer_outputs[2:] | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return DinatEncoderOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
reshaped_hidden_states=all_reshaped_hidden_states, | |
) | |
class DinatPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DinatConfig | |
base_model_prefix = "dinat" | |
main_input_name = "pixel_values" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
DINAT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`DinatConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
DINAT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] | |
for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class DinatModel(DinatPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
requires_backends(self, ["natten"]) | |
self.config = config | |
self.num_levels = len(config.depths) | |
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1)) | |
self.embeddings = DinatEmbeddings(config) | |
self.encoder = DinatEncoder(config) | |
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) | |
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, DinatModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
embedding_output = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = None | |
if self.pooler is not None: | |
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2)) | |
pooled_output = torch.flatten(pooled_output, 1) | |
if not return_dict: | |
output = (sequence_output, pooled_output) + encoder_outputs[1:] | |
return output | |
return DinatModelOutput( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, | |
) | |
class DinatForImageClassification(DinatPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
requires_backends(self, ["natten"]) | |
self.num_labels = config.num_labels | |
self.dinat = DinatModel(config) | |
# Classifier head | |
self.classifier = ( | |
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, DinatImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.dinat( | |
pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return DinatImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
reshaped_hidden_states=outputs.reshaped_hidden_states, | |
) | |
class DinatBackbone(DinatPreTrainedModel, BackboneMixin): | |
def __init__(self, config): | |
super().__init__(config) | |
super()._init_backbone(config) | |
requires_backends(self, ["natten"]) | |
self.embeddings = DinatEmbeddings(config) | |
self.encoder = DinatEncoder(config) | |
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] | |
# Add layer norms to hidden states of out_features | |
hidden_states_norms = {} | |
for stage, num_channels in zip(self._out_features, self.channels): | |
hidden_states_norms[stage] = nn.LayerNorm(num_channels) | |
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def forward( | |
self, | |
pixel_values: torch.Tensor, | |
output_hidden_states: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> BackboneOutput: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, AutoBackbone | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") | |
>>> model = AutoBackbone.from_pretrained( | |
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"] | |
... ) | |
>>> inputs = processor(image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> feature_maps = outputs.feature_maps | |
>>> list(feature_maps[-1].shape) | |
[1, 512, 7, 7] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
embedding_output = self.embeddings(pixel_values) | |
outputs = self.encoder( | |
embedding_output, | |
output_attentions=output_attentions, | |
output_hidden_states=True, | |
output_hidden_states_before_downsampling=True, | |
return_dict=True, | |
) | |
hidden_states = outputs.reshaped_hidden_states | |
feature_maps = () | |
for stage, hidden_state in zip(self.stage_names, hidden_states): | |
if stage in self.out_features: | |
batch_size, num_channels, height, width = hidden_state.shape | |
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() | |
hidden_state = hidden_state.view(batch_size, height * width, num_channels) | |
hidden_state = self.hidden_states_norms[stage](hidden_state) | |
hidden_state = hidden_state.view(batch_size, height, width, num_channels) | |
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() | |
feature_maps += (hidden_state,) | |
if not return_dict: | |
output = (feature_maps,) | |
if output_hidden_states: | |
output += (outputs.hidden_states,) | |
return output | |
return BackboneOutput( | |
feature_maps=feature_maps, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=outputs.attentions, | |
) | |