Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/distilbert
/configuration_distilbert.py
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""DistilBERT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class DistilBertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It | |
is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT | |
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`]. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`): | |
Whether to use sinusoidal positional embeddings. | |
n_layers (`int`, *optional*, defaults to 6): | |
Number of hidden layers in the Transformer encoder. | |
n_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
dim (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
hidden_dim (`int`, *optional*, defaults to 3072): | |
The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
qa_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`]. | |
seq_classif_dropout (`float`, *optional*, defaults to 0.2): | |
The dropout probabilities used in the sequence classification and the multiple choice model | |
[`DistilBertForSequenceClassification`]. | |
Examples: | |
```python | |
>>> from transformers import DistilBertConfig, DistilBertModel | |
>>> # Initializing a DistilBERT configuration | |
>>> configuration = DistilBertConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = DistilBertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "distilbert" | |
attribute_map = { | |
"hidden_size": "dim", | |
"num_attention_heads": "n_heads", | |
"num_hidden_layers": "n_layers", | |
} | |
def __init__( | |
self, | |
vocab_size=30522, | |
max_position_embeddings=512, | |
sinusoidal_pos_embds=False, | |
n_layers=6, | |
n_heads=12, | |
dim=768, | |
hidden_dim=4 * 768, | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation="gelu", | |
initializer_range=0.02, | |
qa_dropout=0.1, | |
seq_classif_dropout=0.2, | |
pad_token_id=0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.sinusoidal_pos_embds = sinusoidal_pos_embds | |
self.n_layers = n_layers | |
self.n_heads = n_heads | |
self.dim = dim | |
self.hidden_dim = hidden_dim | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation = activation | |
self.initializer_range = initializer_range | |
self.qa_dropout = qa_dropout | |
self.seq_classif_dropout = seq_classif_dropout | |
super().__init__(**kwargs, pad_token_id=pad_token_id) | |
class DistilBertOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "multiple-choice": | |
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
else: | |
dynamic_axis = {0: "batch", 1: "sequence"} | |
return OrderedDict( | |
[ | |
("input_ids", dynamic_axis), | |
("attention_mask", dynamic_axis), | |
] | |
) | |