Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/donut
/processing_donut.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for Donut. | |
""" | |
import re | |
import warnings | |
from contextlib import contextmanager | |
from ...processing_utils import ProcessorMixin | |
class DonutProcessor(ProcessorMixin): | |
r""" | |
Constructs a Donut processor which wraps a Donut image processor and an XLMRoBERTa tokenizer into a single | |
processor. | |
[`DonutProcessor`] offers all the functionalities of [`DonutImageProcessor`] and | |
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. See the [`~DonutProcessor.__call__`] and | |
[`~DonutProcessor.decode`] for more information. | |
Args: | |
image_processor ([`DonutImageProcessor`], *optional*): | |
An instance of [`DonutImageProcessor`]. The image processor is a required input. | |
tokenizer ([`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`], *optional*): | |
An instance of [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "AutoImageProcessor" | |
tokenizer_class = "AutoTokenizer" | |
def __init__(self, image_processor=None, tokenizer=None, **kwargs): | |
feature_extractor = None | |
if "feature_extractor" in kwargs: | |
warnings.warn( | |
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" | |
" instead.", | |
FutureWarning, | |
) | |
feature_extractor = kwargs.pop("feature_extractor") | |
image_processor = image_processor if image_processor is not None else feature_extractor | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
super().__init__(image_processor, tokenizer) | |
self.current_processor = self.image_processor | |
self._in_target_context_manager = False | |
def __call__(self, *args, **kwargs): | |
""" | |
When used in normal mode, this method forwards all its arguments to AutoImageProcessor's | |
[`~AutoImageProcessor.__call__`] and returns its output. If used in the context | |
[`~DonutProcessor.as_target_processor`] this method forwards all its arguments to DonutTokenizer's | |
[`~DonutTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. | |
""" | |
# For backward compatibility | |
if self._in_target_context_manager: | |
return self.current_processor(*args, **kwargs) | |
images = kwargs.pop("images", None) | |
text = kwargs.pop("text", None) | |
if len(args) > 0: | |
images = args[0] | |
args = args[1:] | |
if images is None and text is None: | |
raise ValueError("You need to specify either an `images` or `text` input to process.") | |
if images is not None: | |
inputs = self.image_processor(images, *args, **kwargs) | |
if text is not None: | |
encodings = self.tokenizer(text, **kwargs) | |
if text is None: | |
return inputs | |
elif images is None: | |
return encodings | |
else: | |
inputs["labels"] = encodings["input_ids"] | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer | |
to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the | |
docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def as_target_processor(self): | |
""" | |
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning TrOCR. | |
""" | |
warnings.warn( | |
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " | |
"labels by using the argument `text` of the regular `__call__` method (either in the same call as " | |
"your images inputs, or in a separate call." | |
) | |
self._in_target_context_manager = True | |
self.current_processor = self.tokenizer | |
yield | |
self.current_processor = self.image_processor | |
self._in_target_context_manager = False | |
def token2json(self, tokens, is_inner_value=False, added_vocab=None): | |
""" | |
Convert a (generated) token sequence into an ordered JSON format. | |
""" | |
if added_vocab is None: | |
added_vocab = self.tokenizer.get_added_vocab() | |
output = {} | |
while tokens: | |
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE) | |
if start_token is None: | |
break | |
key = start_token.group(1) | |
key_escaped = re.escape(key) | |
end_token = re.search(rf"</s_{key_escaped}>", tokens, re.IGNORECASE) | |
start_token = start_token.group() | |
if end_token is None: | |
tokens = tokens.replace(start_token, "") | |
else: | |
end_token = end_token.group() | |
start_token_escaped = re.escape(start_token) | |
end_token_escaped = re.escape(end_token) | |
content = re.search( | |
f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE | re.DOTALL | |
) | |
if content is not None: | |
content = content.group(1).strip() | |
if r"<s_" in content and r"</s_" in content: # non-leaf node | |
value = self.token2json(content, is_inner_value=True, added_vocab=added_vocab) | |
if value: | |
if len(value) == 1: | |
value = value[0] | |
output[key] = value | |
else: # leaf nodes | |
output[key] = [] | |
for leaf in content.split(r"<sep/>"): | |
leaf = leaf.strip() | |
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": | |
leaf = leaf[1:-2] # for categorical special tokens | |
output[key].append(leaf) | |
if len(output[key]) == 1: | |
output[key] = output[key][0] | |
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip() | |
if tokens[:6] == r"<sep/>": # non-leaf nodes | |
return [output] + self.token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab) | |
if len(output): | |
return [output] if is_inner_value else output | |
else: | |
return [] if is_inner_value else {"text_sequence": tokens} | |
def feature_extractor_class(self): | |
warnings.warn( | |
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", | |
FutureWarning, | |
) | |
return self.image_processor_class | |
def feature_extractor(self): | |
warnings.warn( | |
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", | |
FutureWarning, | |
) | |
return self.image_processor | |