Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/efficientnet
/configuration_efficientnet.py
# coding=utf-8 | |
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""EfficientNet model configuration""" | |
from collections import OrderedDict | |
from typing import List, Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class EfficientNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an | |
EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the EfficientNet | |
[google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
image_size (`int`, *optional*, defaults to 600): | |
The input image size. | |
width_coefficient (`float`, *optional*, defaults to 2.0): | |
Scaling coefficient for network width at each stage. | |
depth_coefficient (`float`, *optional*, defaults to 3.1): | |
Scaling coefficient for network depth at each stage. | |
depth_divisor `int`, *optional*, defaults to 8): | |
A unit of network width. | |
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): | |
List of kernel sizes to be used in each block. | |
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): | |
List of input channel sizes to be used in each block for convolutional layers. | |
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): | |
List of output channel sizes to be used in each block for convolutional layers. | |
depthwise_padding (`List[int]`, *optional*, defaults to `[]`): | |
List of block indices with square padding. | |
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): | |
List of stride sizes to be used in each block for convolutional layers. | |
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): | |
List of the number of times each block is to repeated. | |
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): | |
List of scaling coefficient of each block. | |
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): | |
Squeeze expansion ratio. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, | |
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. | |
hiddem_dim (`int`, *optional*, defaults to 1280): | |
The hidden dimension of the layer before the classification head. | |
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): | |
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, | |
`"max"`] | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
batch_norm_eps (`float`, *optional*, defaults to 1e-3): | |
The epsilon used by the batch normalization layers. | |
batch_norm_momentum (`float`, *optional*, defaults to 0.99): | |
The momentum used by the batch normalization layers. | |
dropout_rate (`float`, *optional*, defaults to 0.5): | |
The dropout rate to be applied before final classifier layer. | |
drop_connect_rate (`float`, *optional*, defaults to 0.2): | |
The drop rate for skip connections. | |
Example: | |
```python | |
>>> from transformers import EfficientNetConfig, EfficientNetModel | |
>>> # Initializing a EfficientNet efficientnet-b7 style configuration | |
>>> configuration = EfficientNetConfig() | |
>>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration | |
>>> model = EfficientNetModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "efficientnet" | |
def __init__( | |
self, | |
num_channels: int = 3, | |
image_size: int = 600, | |
width_coefficient: float = 2.0, | |
depth_coefficient: float = 3.1, | |
depth_divisor: int = 8, | |
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], | |
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], | |
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], | |
depthwise_padding: List[int] = [], | |
strides: List[int] = [1, 2, 2, 2, 1, 2, 1], | |
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], | |
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], | |
squeeze_expansion_ratio: float = 0.25, | |
hidden_act: str = "swish", | |
hidden_dim: int = 2560, | |
pooling_type: str = "mean", | |
initializer_range: float = 0.02, | |
batch_norm_eps: float = 0.001, | |
batch_norm_momentum: float = 0.99, | |
dropout_rate: float = 0.5, | |
drop_connect_rate: float = 0.2, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.width_coefficient = width_coefficient | |
self.depth_coefficient = depth_coefficient | |
self.depth_divisor = depth_divisor | |
self.kernel_sizes = kernel_sizes | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.depthwise_padding = depthwise_padding | |
self.strides = strides | |
self.num_block_repeats = num_block_repeats | |
self.expand_ratios = expand_ratios | |
self.squeeze_expansion_ratio = squeeze_expansion_ratio | |
self.hidden_act = hidden_act | |
self.hidden_dim = hidden_dim | |
self.pooling_type = pooling_type | |
self.initializer_range = initializer_range | |
self.batch_norm_eps = batch_norm_eps | |
self.batch_norm_momentum = batch_norm_momentum | |
self.dropout_rate = dropout_rate | |
self.drop_connect_rate = drop_connect_rate | |
self.num_hidden_layers = sum(num_block_repeats) * 4 | |
class EfficientNetOnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-5 | |