Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/flava
/configuration_flava.py
# coding=utf-8 | |
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""FLAVA model configurations""" | |
import os | |
from typing import Any, Dict, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class FlavaImageConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an | |
FLAVA model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA | |
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to the queries, keys and values. | |
mask_token (`bool`, *optional*, defaults to `True`): | |
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA. | |
vocab_size (`int`, *optional*, defaults to 8192): | |
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked | |
Image Modeling) loss for FLAVA. | |
Example: | |
```python | |
>>> from transformers import FlavaImageConfig, FlavaImageModel | |
>>> # Initializing a FlavaImageModel with style configuration | |
>>> configuration = FlavaImageConfig() | |
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration | |
>>> model = FlavaImageModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "flava_image_model" | |
def __init__( | |
self, | |
hidden_size: int = 768, | |
num_hidden_layers: int = 12, | |
num_attention_heads: int = 12, | |
intermediate_size: int = 3072, | |
hidden_act: int = "gelu", | |
hidden_dropout_prob: float = 0.0, | |
attention_probs_dropout_prob: float = 0.0, | |
initializer_range: float = 0.02, | |
layer_norm_eps: float = 1e-12, | |
image_size: int = 224, | |
patch_size: int = 16, | |
num_channels: int = 3, | |
qkv_bias: bool = True, | |
mask_token: bool = True, | |
vocab_size: int = 8192, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.qkv_bias = qkv_bias | |
self.mask_token = mask_token | |
self.vocab_size = vocab_size | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the image config dict if we are loading from FlavaConfig | |
if config_dict.get("model_type") == "flava": | |
config_dict = config_dict["image_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class FlavaTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an | |
FLAVA model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA | |
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`FlavaTextModel`]. | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though | |
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is | |
used similar to RoBERTa. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to the queries, keys and values. | |
Example: | |
```python | |
>>> from transformers import FlavaTextConfig, FlavaTextModel | |
>>> # Initializing a FlavaTextModel with style configuration | |
>>> configuration = FlavaTextConfig() | |
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration | |
>>> model = FlavaTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "flava_text_model" | |
def __init__( | |
self, | |
vocab_size: int = 30522, | |
type_vocab_size: int = 2, | |
max_position_embeddings: int = 512, | |
position_embedding_type: str = "absolute", | |
hidden_size: int = 768, | |
num_hidden_layers: int = 12, | |
num_attention_heads: int = 12, | |
intermediate_size: int = 3072, | |
hidden_act: str = "gelu", | |
hidden_dropout_prob: float = 0.0, | |
attention_probs_dropout_prob: float = 0.0, | |
initializer_range: float = 0.02, | |
layer_norm_eps: float = 1e-12, | |
pad_token_id: int = 0, | |
qkv_bias: bool = True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.type_vocab_size = type_vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.position_embedding_type = position_embedding_type | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.qkv_bias = qkv_bias | |
self.pad_token_id = pad_token_id | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from FlavaConfig | |
if config_dict.get("model_type") == "flava": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class FlavaMultimodalConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate | |
an FLAVA model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA | |
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 6): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether to add a bias to the queries, keys and values. | |
use_cls_token (`bool`, *optional*, defaults to `True`): | |
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model. | |
Example: | |
```python | |
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel | |
>>> # Initializing a FlavaMultimodalModel with style configuration | |
>>> configuration = FlavaMultimodalConfig() | |
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration | |
>>> model = FlavaMultimodalModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "flava_multimodal_model" | |
def __init__( | |
self, | |
hidden_size: int = 768, | |
num_hidden_layers: int = 6, | |
num_attention_heads: int = 12, | |
intermediate_size: int = 3072, | |
hidden_act: int = "gelu", | |
hidden_dropout_prob: int = 0.0, | |
attention_probs_dropout_prob: int = 0.0, | |
initializer_range: float = 0.02, | |
layer_norm_eps: float = 1e-12, | |
qkv_bias: bool = True, | |
use_cls_token: bool = True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.qkv_bias = qkv_bias | |
self.use_cls_token = use_cls_token | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the multimodal config dict if we are loading from FlavaConfig | |
if config_dict.get("model_type") == "flava": | |
config_dict = config_dict["multimodal_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class FlavaImageCodebookConfig(PretrainedConfig): | |
model_type = "flava_image_codebook" | |
r""" | |
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It | |
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA | |
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_groups (`int`, *optional*, defaults to 4): | |
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some | |
internal calculation and estimations. | |
input_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the image to be passed. | |
num_blocks_per_group (`int`, *optional*, defaults to 2): | |
Number of conv-based blocks per group. | |
hidden_size (`int`, *optional*, defaults to 256): | |
Size of hidden dim for the blocks. | |
vocab_size (`int`, *optional*, defaults to 8192): | |
Size of the output vocabulary for the codebook. | |
freeze (`bool`, defaults to `True`): | |
Whether to freeze the weights of the model. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook | |
>>> # Initializing a FlavaImageCodebook with style configuration | |
>>> configuration = FlavaImageCodebookConfig() | |
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration | |
>>> model = FlavaImageCodebook(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
def __init__( | |
self, | |
num_groups: int = 4, | |
input_channels: int = 3, | |
num_blocks_per_group: int = 2, | |
hidden_size: int = 256, | |
vocab_size: int = 8192, | |
freeze: int = True, | |
initializer_range: float = 0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.num_groups = num_groups | |
self.input_channels = input_channels | |
self.num_blocks_per_group = num_blocks_per_group | |
self.hidden_size = hidden_size | |
self.vocab_size = vocab_size | |
self.freeze = freeze | |
self.initializer_range = initializer_range | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the image codebook config dict if we are loading from FlavaConfig | |
if config_dict.get("model_type") == "flava": | |
config_dict = config_dict["image_codebook_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class FlavaConfig(PretrainedConfig): | |
r""" | |
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to | |
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook | |
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to | |
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`FlavaTextConfig`]. | |
image_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`FlavaImageConfig`]. | |
multimodal_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimensionality of text and image projection layers. | |
logit_scale_init_value (`float`, *optional*, defaults to 2.6592): | |
The initial value of the *logit_scale* parameter. Default is used as per the original FLAVA/CLIP | |
implementation. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
ce_ignore_index (`int`, *optional*, defaults to -100): | |
Cross entropy index to ignore. | |
mim_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss | |
mlm_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss | |
global_contrastive_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to global contrastive cross-alignment loss. | |
itm_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to image-text matching multimodal loss. | |
mmm_image_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to MMM loss's image part. | |
mmm_text_weight (`float`, *optional*, defaults to 1.0): | |
Weight to be assigned to MMM loss's text part. | |
global_backprop_contrastive (`bool`, *optional*, defaults to `True`): | |
Whether to use global backpropgation through all workers in contrastive loss. | |
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`): | |
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses. | |
return_loss (`bool`, *optional*, defaults to `True`): | |
Whether to return loss or not | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining | |
>>> # Initializing a FlavaConfig with style configuration | |
>>> configuration = FlavaConfig() | |
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration | |
>>> model = FlavaModel(configuration) | |
>>> model_pre = FlavaForPreTraining(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> configuration_pre = model_pre.config | |
``` | |
""" | |
model_type = "flava" | |
def __init__( | |
self, | |
image_config: Dict[str, Any] = None, | |
text_config: Dict[str, Any] = None, | |
multimodal_config: Dict[str, Any] = None, | |
image_codebook_config: Dict[str, Any] = None, | |
hidden_size: int = 768, | |
layer_norm_eps: float = 1e-12, | |
projection_dim: int = 768, | |
init_codebook: bool = True, | |
logit_scale_init_value: float = 2.6592, | |
initializer_range: float = 0.02, | |
ce_ignore_index: int = -100, | |
mim_weight: float = 1.0, | |
mlm_weight: float = 1.0, | |
global_contrastive_weight: float = 1.0, | |
itm_weight: float = 1.0, | |
mmm_image_weight: float = 1.0, | |
mmm_text_weight: float = 1.0, | |
global_backprop_contrastive: bool = True, | |
skip_unmasked_multimodal_encoder: bool = True, | |
return_loss: bool = True, | |
**kwargs, | |
): | |
# If `_config_dict` exist, we use them for the backward compatibility. | |
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot | |
# of confusion!). | |
text_config_dict = kwargs.pop("text_config_dict", None) | |
image_config_dict = kwargs.pop("image_config_dict", None) | |
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None) | |
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None) | |
super().__init__(**kwargs) | |
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in | |
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most | |
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. | |
if text_config_dict is not None: | |
if text_config is None: | |
text_config = {} | |
# This is the complete result when using `text_config_dict`. | |
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict() | |
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. | |
for key, value in _text_config_dict.items(): | |
if key in text_config and value != text_config[key] and key not in ["transformers_version"]: | |
# If specified in `text_config_dict` | |
if key in text_config_dict: | |
message = ( | |
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " | |
f'The value `text_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The " | |
f'value `text_config["{key}"]` will be overridden.' | |
) | |
logger.info(message) | |
# Update all values in `text_config` with the ones in `_text_config_dict`. | |
text_config.update(_text_config_dict) | |
if image_config_dict is not None: | |
if image_config is None: | |
image_config = {} | |
# This is the complete result when using `image_config_dict`. | |
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict() | |
# convert keys to string instead of integer | |
if "id2label" in _image_config_dict: | |
_image_config_dict["id2label"] = { | |
str(key): value for key, value in _image_config_dict["id2label"].items() | |
} | |
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different. | |
for key, value in _image_config_dict.items(): | |
if key in image_config and value != image_config[key] and key not in ["transformers_version"]: | |
# If specified in `image_config_dict` | |
if key in image_config_dict: | |
message = ( | |
f"`{key}` is found in both `image_config_dict` and `image_config` but with different " | |
f'values. The value `image_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. " | |
f'The value `image_config["{key}"]` will be overridden.' | |
) | |
logger.info(message) | |
# Update all values in `image_config` with the ones in `_image_config_dict`. | |
image_config.update(_image_config_dict) | |
if multimodal_config_dict is not None: | |
if multimodal_config is None: | |
multimodal_config = {} | |
# This is the complete result when using `multimodal_config_dict`. | |
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict() | |
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being | |
# different. | |
for key, value in _multimodal_config_dict.items(): | |
if ( | |
key in multimodal_config | |
and value != multimodal_config[key] | |
and key not in ["transformers_version"] | |
): | |
# If specified in `multimodal_config_dict` | |
if key in multimodal_config_dict: | |
message = ( | |
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with " | |
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.' | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`multimodal_config_dict` is provided which will be used to initialize " | |
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overridden.' | |
) | |
logger.info(message) | |
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`. | |
multimodal_config.update(_multimodal_config_dict) | |
if image_codebook_config_dict is not None: | |
if image_codebook_config is None: | |
image_codebook_config = {} | |
# This is the complete result when using `image_codebook_config_dict`. | |
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict() | |
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but | |
# being different. | |
for key, value in _image_codebook_config_dict.items(): | |
if ( | |
key in image_codebook_config | |
and value != image_codebook_config[key] | |
and key not in ["transformers_version"] | |
): | |
# If specified in `image_codebook_config_dict` | |
if key in image_codebook_config_dict: | |
message = ( | |
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but " | |
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used ' | |
"instead." | |
) | |
# If inferred from default argument values (just to be super careful) | |
else: | |
message = ( | |
f"`image_codebook_config_dict` is provided which will be used to initialize " | |
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overridden.' | |
) | |
logger.info(message) | |
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`. | |
image_codebook_config.update(_image_codebook_config_dict) | |
if image_config is None: | |
image_config = {} | |
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.") | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.") | |
if multimodal_config is None: | |
multimodal_config = {} | |
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.") | |
if image_codebook_config is None: | |
image_codebook_config = {} | |
logger.info( | |
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values." | |
) | |
self.image_config = FlavaImageConfig(**image_config) | |
self.text_config = FlavaTextConfig(**text_config) | |
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config) | |
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config) | |
self.projection_dim = projection_dim | |
self.init_codebook = init_codebook | |
self.hidden_size = hidden_size | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_range = initializer_range | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = 1.0 | |
self.ce_ignore_index = ce_ignore_index | |
self.mim_weight = mim_weight | |
self.mlm_weight = mlm_weight | |
self.global_contrastive_weight = global_contrastive_weight | |
self.itm_weight = itm_weight | |
self.mmm_image_weight = mmm_image_weight | |
self.mmm_text_weight = mmm_text_weight | |
self.global_backprop_contrastive = global_backprop_contrastive | |
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder | |
self.return_loss = return_loss | |
def from_configs( | |
cls, | |
image_config: FlavaImageConfig, | |
text_config: FlavaTextConfig, | |
multimodal_config: FlavaMultimodalConfig, | |
image_codebook_config: FlavaImageCodebookConfig, | |
**kwargs, | |
): | |
r""" | |
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model | |
configuration, flava multimodal model and flava codebook model configuration. | |
Returns: | |
[`FlavaConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
image_config=image_config.to_dict(), | |
text_config=text_config.to_dict(), | |
multimodal_config=multimodal_config.to_dict(), | |
image_codebook_config=image_codebook_config.to_dict(), | |
**kwargs, | |
) | |