Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/flava
/modeling_flava.py
# coding=utf-8 | |
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch FLAVA model.""" | |
import collections | |
import math | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Set, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_flava import ( | |
FlavaConfig, | |
FlavaImageCodebookConfig, | |
FlavaImageConfig, | |
FlavaMultimodalConfig, | |
FlavaTextConfig, | |
) | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "facebook/flava-full" | |
# Codebook docstring | |
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook" | |
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig" | |
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig" | |
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig" | |
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768] | |
LOGIT_SCALE_CLAMP_MIN = 0 | |
LOGIT_SCALE_CLAMP_MAX = 4.6052 | |
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig] | |
class FlavaModelOutput(ModelOutput): | |
""" | |
Output from FlavaModel containing embeddings and outputs from individual encoders. | |
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a | |
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and | |
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively. | |
Args: | |
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): | |
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. | |
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): | |
The output of the [`FlavaImageModel`]. | |
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): | |
The text embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): | |
The output of the [`FlavaTextModel`]. | |
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): | |
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): | |
The output of the [`FlavaMultimodalModel`]. | |
""" | |
image_embeddings: Optional[torch.FloatTensor] = None | |
image_output: Optional[BaseModelOutputWithPooling] = None | |
text_embeddings: Optional[torch.FloatTensor] = None | |
text_output: Optional[BaseModelOutputWithPooling] = None | |
multimodal_embeddings: Optional[torch.FloatTensor] = None | |
multimodal_output: Optional[BaseModelOutputWithPooling] = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
class FlavaLosses(ModelOutput): | |
"""Class representing pretraining losses from FLAVA model | |
Args: | |
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.: | |
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data. | |
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.: | |
Masked Language Modeling loss as used in BERT calculated only for unimodal text data. | |
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.: | |
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on | |
masked pairs in FLAVA. | |
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.: | |
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text | |
data. This is calculated on unmasked images and texts. | |
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.: | |
Masked Multimodal Modeling loss's image component calculated on paired image-text data. | |
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.: | |
Masked Multimodal Modeling loss's text component calculated on paired image-text data. | |
""" | |
mim: Optional[torch.FloatTensor] = None | |
mlm: Optional[torch.FloatTensor] = None | |
itm: Optional[torch.FloatTensor] = None | |
global_contrastive: Optional[torch.FloatTensor] = None | |
mmm_image: Optional[torch.FloatTensor] = None | |
mmm_text: Optional[torch.FloatTensor] = None | |
def all_none(self) -> bool: | |
all_none = True | |
for v in self.values(): | |
if v is not None: | |
all_none = False | |
break | |
return all_none | |
class FlavaForPreTrainingOutput(ModelOutput): | |
""" | |
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders. | |
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a | |
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and | |
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively. | |
Args: | |
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True): | |
Total loss calculated for this model. | |
loss_info (`FlavaLosses`): | |
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on | |
the keys. | |
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): | |
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. | |
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): | |
The output of the [`FlavaImageModel`]. | |
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): | |
The text embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): | |
The output of the [`FlavaTextModel`]. | |
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): | |
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): | |
The output of the [`FlavaMultimodalModel`]. | |
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): | |
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos` | |
to create masked images. | |
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): | |
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images. | |
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present): | |
The text embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present): | |
The output of the [`FlavaTextModel`]. | |
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present): | |
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. | |
multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present): | |
The output of the [`FlavaMultimodalModel`]. | |
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not): | |
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is | |
returned when `bool_masked_pos` has some of the patches masked. | |
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not): | |
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of | |
the tokens masked. | |
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present): | |
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA. | |
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present): | |
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened | |
output is returned when `bool_masked_pos` has some of the patches masked. | |
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present): | |
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has | |
some of the tokens masked. | |
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's | |
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity | |
scores. This is calculated on unmasked images and texts. | |
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's | |
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and | |
texts. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
loss_info: FlavaLosses = None | |
image_embeddings: Optional[torch.FloatTensor] = None | |
image_output: Optional[BaseModelOutputWithPooling] = None | |
text_embeddings: Optional[torch.FloatTensor] = None | |
text_output: Optional[BaseModelOutputWithPooling] = None | |
multimodal_embeddings: Optional[torch.FloatTensor] = None | |
multimodal_output: Optional[BaseModelOutputWithPooling] = None | |
image_masked_embeddings: Optional[torch.FloatTensor] = None | |
image_masked_output: Optional[BaseModelOutputWithPooling] = None | |
text_masked_embeddings: Optional[torch.FloatTensor] = None | |
text_masked_output: Optional[BaseModelOutputWithPooling] = None | |
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None | |
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None | |
mim_logits: Optional[torch.FloatTensor] = None | |
mlm_logits: Optional[torch.FloatTensor] = None | |
itm_logits: Optional[torch.FloatTensor] = None | |
contrastive_logits_per_image: Optional[torch.FloatTensor] = None | |
contrastive_logits_per_text: Optional[torch.FloatTensor] = None | |
mmm_image_logits: Optional[torch.FloatTensor] = None | |
mmm_text_logits: Optional[torch.FloatTensor] = None | |
def to_tuple(self) -> Tuple[Any]: | |
transformer_outputs = [ | |
"text_output", | |
"image_output", | |
"multimodal_output", | |
"text_masked_output", | |
"image_masked_output", | |
"multimodal_masked_output", | |
] | |
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys()) | |
# Based on timm implementation, which can be found here: | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py | |
class FlavaImageEmbeddings(nn.Module): | |
""" | |
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. | |
""" | |
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None: | |
super().__init__() | |
use_mask_token = use_mask_token or config.mask_token | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None | |
self.patch_embeddings = PatchEmbeddings( | |
image_size=config.image_size, | |
patch_size=config.patch_size, | |
num_channels=config.num_channels, | |
embed_dim=config.hidden_size, | |
) | |
num_patches = self.patch_embeddings.num_patches | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.config = config | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174 | |
""" | |
npatch = embeddings.shape[1] - 1 | |
num_pos = self.position_embeddings.shape[1] - 1 | |
if npatch == num_pos and height == width: | |
return self.position_embeddings | |
class_pos_embed = self.position_embeddings[:, 0] | |
patch_pos_embed = self.position_embeddings[:, 1:] | |
dim = embeddings.shape[-1] | |
num_h_patches = height // self.config.patch_size | |
num_w_patches = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2), | |
scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)), | |
mode="bicubic", | |
align_corners=False, | |
) | |
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]: | |
raise ValueError( | |
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " | |
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})" | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def forward( | |
self, | |
pixel_values: torch.Tensor, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
interpolate_pos_encoding: bool = False, | |
) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
batch_size, seq_len, _ = embeddings.size() | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) | |
# B X H X W = B X HW | |
if bool_masked_pos.dim() == 3: | |
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1) | |
# replace the masked visual tokens by mask_tokens | |
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
# add the [CLS] token to the embedded patch tokens | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
# add positional encoding to each token | |
if interpolate_pos_encoding: | |
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
# Based on timm implementation, which can be found here: | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py | |
class PatchEmbeddings(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__( | |
self, | |
image_size: int = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
num_channels: int = 3, | |
embed_dim: int = 768, | |
): | |
super().__init__() | |
if not isinstance(image_size, collections.abc.Iterable): | |
image_size = (image_size, image_size) | |
if not isinstance(patch_size, collections.abc.Iterable): | |
patch_size = (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if not interpolate_pos_encoding: | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model" | |
f" ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
x = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return x | |
class FlavaTextEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.register_buffer( | |
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
): | |
input_shape = input_ids.size() | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class FlavaSelfAttention(nn.Module): | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class FlavaSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other | |
models), due to the layernorm applied before each block. | |
""" | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class FlavaAttention(nn.Module): | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
self.attention = FlavaSelfAttention(config) | |
self.output = FlavaSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads: Set[int]) -> None: | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_outputs = self.attention( | |
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class FlavaIntermediate(nn.Module): | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class FlavaOutput(nn.Module): | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states + input_tensor | |
return hidden_states | |
class FlavaLayer(nn.Module): | |
"""This corresponds to the Block class in the timm implementation.""" | |
def __init__(self, config: FlavaPossibleConfigs) -> None: | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = FlavaAttention(config) | |
self.intermediate = FlavaIntermediate(config) | |
self.output = FlavaOutput(config) | |
# TODO: Check fp32 layer norm possiblity | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# first residual connection | |
hidden_states = attention_output + hidden_states | |
# in ViT, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
# second residual connection is done here | |
layer_output = self.output(layer_output, hidden_states) | |
outputs = (layer_output,) + outputs | |
return outputs | |
class FlavaEncoder(nn.Module): | |
def __init__(self, config: FlavaConfig) -> None: | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions | |
) | |
class FlavaPooler(nn.Module): | |
def __init__(self, config: FlavaPossibleConfigs): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
FLAVA_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`{config}`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
FLAVA_INPUTS_DOCSTRING_COMMON = r""" | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`FlavaImageProcessor.__call__`] for details. | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
interpolate_pos_encoding (`bool`, *optional*): | |
Whether to interpolate the pre-trained position encodings. | |
""" | |
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON | |
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See | |
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input | |
IDs?](../glossary#input-ids) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
""" | |
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON | |
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = ( | |
r""" | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`): | |
The concatenated hidden states of unimodal encoders. | |
""" | |
+ FLAVA_INPUTS_DOCSTRING_COMMON | |
) | |
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r""" | |
Args: | |
skip_multimodal_encoder (*bool*, *optional*): | |
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used. | |
""" | |
FLAVA_MODEL_INPUTS_DOCSTRING = ( | |
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE | |
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE | |
+ FLAVA_INPUTS_DOCSTRING_COMMON | |
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE | |
) | |
FLAVA_PRETRAINING_INPUTS_DOCSTRING = ( | |
r""" | |
Args: | |
input_ids_masked (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task | |
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with | |
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) | |
""" | |
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE | |
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE | |
+ r""" | |
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*): | |
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected | |
in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
skip_unmasked_multimodal_encoder (*bool*, *optional*): | |
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked | |
multimodal embeddings or outputs as of now. | |
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*): | |
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction). | |
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with | |
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, | |
..., text_config.vocab_size - 1]`. | |
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*): | |
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ..., | |
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only | |
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are | |
generated automatically using the image codebook assigned to the model. By default, it uses | |
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels. | |
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): | |
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. | |
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well. | |
return_loss (`bool`, *optional*, default to None): | |
Whether to return calculated loss or not. | |
""" | |
+ FLAVA_INPUTS_DOCSTRING_COMMON | |
) | |
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r""" | |
Parameters: | |
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will | |
be initialized using the image_codebook_config defined in the config first as the first parameter. | |
""" | |
class FlavaPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = FlavaConfig | |
base_model_prefix = "flava" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class FlavaImageModel(FlavaPreTrainedModel): | |
config_class = FlavaImageConfig | |
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints. | |
base_model_prefix = "flava.image_model" | |
main_input_name = "pixel_values" | |
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = FlavaImageEmbeddings(config) | |
self.encoder = FlavaEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = FlavaPooler(config) if add_pooling_layer else None | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.embeddings.patch_embeddings | |
def set_input_embeddings(self, value: nn.Module): | |
self.embeddings.patch_embeddings = value | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
interpolate_pos_encoding: Optional[bool] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BaseModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class FlavaTextModel(FlavaPreTrainedModel): | |
config_class = FlavaTextConfig | |
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints. | |
base_model_prefix = "flava.text_model" | |
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = FlavaTextEmbeddings(config) | |
self.encoder = FlavaEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = FlavaPooler(config) if add_pooling_layer else None | |
self.post_init() | |
def get_input_embeddings(self) -> PatchEmbeddings: | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value: nn.Module): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BaseModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=input_ids.device) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( | |
attention_mask, input_shape, input_ids.device | |
) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class FlavaMultimodalModel(FlavaPreTrainedModel): | |
config_class = FlavaMultimodalConfig | |
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints. | |
base_model_prefix = "flava.multimodal_model" | |
main_input_name = "hidden_states" | |
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.use_cls_token = self.config.use_cls_token | |
if self.use_cls_token: | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.encoder = FlavaEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = FlavaPooler(config) if add_pooling_layer else None | |
self.post_init() | |
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BaseModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
batch_size, seq_length, _ = hidden_states.size() | |
if self.use_cls_token: | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1) | |
seq_length += 1 | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( | |
attention_mask, (batch_size, seq_length), hidden_states.device | |
) | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class FlavaModel(FlavaPreTrainedModel): | |
config_class = FlavaConfig | |
def __init__(self, config: FlavaConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, FlavaTextConfig): | |
raise TypeError( | |
"config.text_config is expected to be of type FlavaTextConfig but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.image_config, FlavaImageConfig): | |
raise TypeError( | |
"config.image_config is expected to be of type FlavaImageConfig but is of type" | |
f" {type(config.image_config)}." | |
) | |
if not isinstance(config.multimodal_config, FlavaMultimodalConfig): | |
raise TypeError( | |
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but " | |
+ f"is of type {type(config.multimodal_config)}." | |
) | |
text_config = config.text_config | |
image_config = config.image_config | |
multimodal_config = config.multimodal_config | |
self.projection_dim = config.projection_dim | |
self.text_hidden_size = text_config.hidden_size | |
self.image_hidden_size = image_config.hidden_size | |
self.mm_hidden_size = multimodal_config.hidden_size | |
self.text_model = FlavaTextModel(text_config) | |
self.image_model = FlavaImageModel(image_config) | |
self.multimodal_model = FlavaMultimodalModel(multimodal_config) | |
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim) | |
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim) | |
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) | |
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size) | |
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
applying the projection layer to the pooled output of [`FlavaTextModel`]. | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, FlavaModel | |
>>> model = FlavaModel.from_pretrained("{0}") | |
>>> processor = AutoProcessor.from_pretrained("{0}") | |
>>> inputs = processor( | |
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt" | |
... ) | |
>>> text_features = model.get_text_features(**inputs) | |
```""".format(_CHECKPOINT_FOR_DOC) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[0] # last_hidden_state | |
text_features = self.text_projection(pooled_output) | |
return text_features | |
def get_image_features( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
interpolate_pos_encoding: Optional[bool] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
applying the projection layer to the pooled output of [`FlavaImageModel`]. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, FlavaModel | |
>>> model = FlavaModel.from_pretrained("{0}") | |
>>> processor = AutoProcessor.from_pretrained("{0}") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, return_tensors="pt") | |
>>> image_features = model.get_image_features(**inputs) | |
```""".format(_CHECKPOINT_FOR_DOC) | |
image_outputs = self.image_model( | |
pixel_values=pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
return_dict=return_dict, | |
) | |
pooled_output = image_outputs[0] # last_hidden_state | |
image_features = self.image_projection(pooled_output) | |
return image_features | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
image_attention_mask: Optional[torch.Tensor] = None, | |
skip_multimodal_encoder: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: bool = True, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, FlavaOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, FlavaModel | |
>>> model = FlavaModel.from_pretrained("facebook/flava-full") | |
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True) | |
>>> outputs = model(**inputs) | |
>>> image_embeddings = outputs.image_embeddings | |
>>> text_embeddings = outputs.text_embeddings | |
>>> multimodal_embeddings = outputs.multimodal_embeddings | |
>>> outputs.image_embeddings.shape | |
torch.Size([1, 197, 768]) | |
>>> text_embeddings.shape | |
torch.Size([1, 7, 768]) | |
>>> multimodal_embeddings.shape | |
torch.Size([1, 205, 768]) | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
if not output_hidden_states: | |
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`") | |
image_embeddings = None | |
image_states = None | |
image_mm_projection = None | |
image_output = None | |
if pixel_values is not None: | |
image_output = self.image_model( | |
pixel_values=pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
attention_mask=image_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
image_embeddings, image_states = image_output[0], image_output[2] | |
# Note that these states don't use final layernorm in the transformer model | |
image_mm_projection = self.image_to_mm_projection(image_states[-1]) | |
text_embeddings = None | |
text_states = None | |
text_mm_projection = None | |
text_output = None | |
if input_ids is not None: | |
text_output = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_embeddings, text_states = text_output[0], text_output[2] | |
# Note that these states don't use final layernorm in the transformer model | |
text_mm_projection = self.text_to_mm_projection(text_states[-1]) | |
multimodal_embeddings = None | |
multimodal_output = None | |
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder: | |
if attention_mask is not None: | |
batch_size, seq_len, _ = image_mm_projection.shape | |
if self.multimodal_model.use_cls_token: | |
seq_len += 1 | |
attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device) | |
attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1) | |
else: | |
attention_multimodal = None | |
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1) | |
multimodal_output = self.multimodal_model( | |
multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict | |
) | |
multimodal_embeddings = multimodal_output[0] | |
if not return_dict: | |
return ( | |
image_embeddings, | |
image_output, | |
text_embeddings, | |
text_output, | |
multimodal_embeddings, | |
multimodal_output, | |
) | |
return FlavaModelOutput( | |
image_embeddings=image_embeddings, | |
image_output=image_output, | |
text_embeddings=text_embeddings, | |
text_output=text_output, | |
multimodal_embeddings=multimodal_embeddings, | |
multimodal_output=multimodal_output, | |
) | |
class FlavaImageCodebookResPath(nn.Module): | |
def __init__(self, in_size: int, out_size: int, **kwargs): | |
super().__init__() | |
hid_size = out_size // 4 | |
path = OrderedDict() | |
path["relu_1"] = nn.ReLU() | |
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1) | |
path["relu_2"] = nn.ReLU() | |
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) | |
path["relu_3"] = nn.ReLU() | |
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) | |
path["relu_4"] = nn.ReLU() | |
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0) | |
self.path = nn.Sequential(path) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.path(x) | |
class FlavaImageCodebookBlock(nn.Module): | |
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs): | |
super().__init__() | |
self.post_gain = 1 / (num_layers**2) | |
if in_size != out_size: | |
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0) | |
else: | |
self.id_path = nn.Identity() | |
self.res_path = FlavaImageCodebookResPath(in_size, out_size) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.id_path(x) + self.post_gain * self.res_path(x) | |
class FlavaImageCodebookLayerGroup(nn.Module): | |
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True): | |
super().__init__() | |
blocks = OrderedDict() | |
for i in range(num_blocks): | |
if i == 0: | |
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers) | |
else: | |
blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers) | |
if use_pool: | |
blocks["pool"] = nn.MaxPool2d(kernel_size=2) | |
self.group = nn.Sequential(blocks) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.group(x) | |
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42 | |
class FlavaImageCodebook(FlavaPreTrainedModel): | |
base_model_prefix = "" | |
config_class = FlavaImageCodebookConfig | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = False | |
def __init__( | |
self, | |
config: FlavaImageCodebookConfig, | |
**kwargs: Any, | |
): | |
super().__init__(config) | |
self.config = config | |
self.num_groups = config.num_groups | |
self.input_channels = config.input_channels | |
self.num_blocks_per_group = config.num_blocks_per_group | |
self.hidden_size = config.hidden_size | |
self.vocab_size = config.vocab_size | |
num_layers = self.num_groups * self.num_blocks_per_group | |
output_blocks = OrderedDict() | |
output_blocks["relu"] = nn.ReLU() | |
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0) | |
blocks = OrderedDict() | |
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3) | |
blocks["group_1"] = FlavaImageCodebookLayerGroup( | |
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size | |
) | |
blocks["group_2"] = FlavaImageCodebookLayerGroup( | |
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size | |
) | |
blocks["group_3"] = FlavaImageCodebookLayerGroup( | |
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size | |
) | |
blocks["group_4"] = FlavaImageCodebookLayerGroup( | |
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False | |
) | |
blocks["output"] = nn.Sequential(output_blocks) | |
self.blocks = nn.Sequential(blocks) | |
self.post_init() | |
if self.config.freeze: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing | |
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoImageProcessor, FlavaImageCodebook | |
>>> model = FlavaImageCodebook.from_pretrained("{0}") | |
>>> image_processor = AutoImageProcessor.from_pretrained("{0}") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") | |
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values) | |
>>> outputs = model.get_codebook_indices(**inputs) | |
``` | |
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC) | |
z_logits = self.blocks(pixel_values) | |
return torch.argmax(z_logits, axis=1) | |
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
z_logits = self.blocks(pixel_values) | |
return nn.Softmax(dim=1)(z_logits) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing | |
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoImageProcessor, FlavaImageCodebook | |
>>> model = FlavaImageCodebook.from_pretrained("{0}") | |
>>> image_processor = AutoImageProcessor.from_pretrained("{0}") | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") | |
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values) | |
>>> outputs = model(**inputs) | |
>>> print(outputs.shape) | |
(1, 196) | |
``` | |
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC) | |
if len(pixel_values.shape) != 4: | |
raise ValueError(f"input shape {pixel_values.shape} is not 4d") | |
if pixel_values.shape[1] != self.input_channels: | |
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}") | |
return self.blocks(pixel_values) | |
class FlavaPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class FlavaMaskedPredictionHead(nn.Module): | |
def __init__(self, config, weight=None): | |
super().__init__() | |
self.config = config | |
self.transform = FlavaPredictionHeadTransform(config) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
if weight is not None: | |
self.decoder.weight = weight | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def _tie_weights(self): | |
self.decoder.bias = self.bias | |
def forward(self, x): | |
x = self.transform(x) | |
x = self.decoder(x) | |
return x | |
class FlavaITMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.pooler = FlavaPooler(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, x): | |
x = self.pooler(x) | |
x = self.seq_relationship(x) | |
return x | |
class FlavaGlobalContrastiveHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.global_backprop_contrastive = config.global_backprop_contrastive | |
def forward(self, image_embeddings, text_embeddings, logit_scale): | |
temperature = torch.exp(logit_scale) | |
if not torch.distributed.is_available() or not torch.distributed.is_initialized(): | |
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device) | |
image_embeddings_all = [image_embeddings] | |
text_embeddings_all = [text_embeddings] | |
else: | |
local_batch_size = image_embeddings.size(0) | |
world_size = torch.distributed.get_world_size() | |
if self.global_backprop_contrastive: | |
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers | |
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker. | |
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings) | |
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings) | |
else: | |
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)] | |
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)] | |
torch.distributed.all_gather(image_embeddings_all, image_embeddings) | |
torch.distributed.all_gather(text_embeddings_all, text_embeddings) | |
labels = local_batch_size * torch.distributed.get_rank() + torch.arange( | |
local_batch_size, device=image_embeddings.device | |
) | |
image_embeddings_all = torch.cat(image_embeddings_all) | |
text_embeddings_all = torch.cat(text_embeddings_all) | |
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature | |
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature | |
return logits_per_image, logits_per_text, labels | |
class FlavaForPreTraining(FlavaPreTrainedModel): | |
# Those are linked to xxx.bias | |
_tied_weights_keys = [ | |
"mmm_text_head.decoder.bias", | |
"mmm_image_head.decoder.bias", | |
"mlm_head.decoder.bias", | |
"mim_head.decoder.bias", | |
] | |
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None): | |
super().__init__(config) | |
self.flava = FlavaModel(config) | |
self.image_codebook = image_codebook | |
if self.image_codebook is None and config.init_codebook: | |
self.image_codebook = FlavaImageCodebook(config.image_codebook_config) | |
# Levarage text and image encoder configs to create the masked | |
# head since it has the right vocab | |
self.mim_head = FlavaMaskedPredictionHead(config.image_config) | |
self.mlm_head = FlavaMaskedPredictionHead(config.text_config) | |
self.itm_head = FlavaITMHead(config) | |
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config) | |
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config) | |
self.global_contrastive_head = FlavaGlobalContrastiveHead(config) | |
self.image_vocab_size = config.image_config.vocab_size | |
self.text_vocab_size = config.text_config.vocab_size | |
self.mlm_weight = config.mlm_weight | |
self.mim_weight = config.mim_weight | |
self.global_contrastive_weight = config.global_contrastive_weight | |
self.ce_ignore_index = config.ce_ignore_index | |
self.itm_weight = config.itm_weight | |
self.mmm_image_weight = config.mmm_image_weight | |
self.mmm_text_weight = config.mmm_text_weight | |
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder | |
self.post_init() | |
def _resize_to_2d(self, x: torch.Tensor): | |
if x.dim() > 2: | |
x = x.view(x.size(0), -1) | |
return x | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
input_ids_masked: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
codebook_pixel_values: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
image_attention_mask: Optional[torch.Tensor] = None, | |
skip_unmasked_multimodal_encoder: bool = None, | |
mlm_labels: Optional[torch.Tensor] = None, | |
mim_labels: Optional[torch.Tensor] = None, | |
itm_labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: bool = True, | |
return_dict: Optional[bool] = None, | |
return_loss: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]: | |
""" | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import FlavaForPreTraining, AutoProcessor | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full") | |
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full") | |
>>> text = ["a photo of a cat"] | |
>>> inputs = processor( | |
... images=[image], | |
... text=text, | |
... return_masks=True, | |
... return_codebook_pixels=True, | |
... padding=True, | |
... max_length=77, | |
... return_tensors="pt", | |
... ) | |
>>> output = model(**inputs) | |
``` | |
Return: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
return_loss = return_loss if return_loss is not None else self.config.return_loss | |
skip_unmasked_multimodal_encoder = ( | |
skip_unmasked_multimodal_encoder | |
if skip_unmasked_multimodal_encoder is not None | |
else self.skip_unmasked_multimodal_encoder | |
) | |
if input_ids_masked is None and input_ids is not None: | |
logger.warning( | |
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to" | |
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if" | |
" you are doing inference on unmasked text..." | |
) | |
input_ids_masked = input_ids | |
flava_output = self.flava( | |
input_ids=input_ids, | |
pixel_values=pixel_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
image_attention_mask=image_attention_mask, | |
# Don't need unmasked multimodal embedding for anything so skip it | |
# NOTE: ITM uses masked version | |
skip_multimodal_encoder=skip_unmasked_multimodal_encoder, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
# Pass true to have deterministic outputs | |
return_dict=True, | |
) | |
flava_masked_output = self.flava( | |
input_ids=input_ids_masked, | |
pixel_values=pixel_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
image_attention_mask=image_attention_mask, | |
bool_masked_pos=bool_masked_pos, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
pos_mask = None | |
image_embeddings = flava_output.image_embeddings | |
text_embeddings = flava_output.text_embeddings | |
image_masked_embeddings = flava_masked_output.image_embeddings | |
text_masked_embeddings = flava_masked_output.text_embeddings | |
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings | |
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None | |
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None | |
itm_logits = logits_per_image = logits_per_text = None | |
# Calculate mim_labels if necessary from the image_codebook | |
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None: | |
if mim_labels is None and return_loss: | |
if self.image_codebook is None: | |
raise RuntimeError( | |
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` " | |
" have been passed. Reinstantiate the model with `init_codebook` set to True or " | |
"pass in your custom `mim_labels`" | |
) | |
if codebook_pixel_values is None: | |
raise ValueError( | |
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. " | |
"Call `AutoProcessor` with `return_codebook_pixels` set to True" | |
) | |
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values) | |
# Unimodal MIM Loss | |
# If multimodal embeddings are present, we will calculate MMM loss | |
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None: | |
sequence_for_image = image_masked_embeddings | |
if mim_labels is not None: | |
mim_labels = self._resize_to_2d(mim_labels) | |
bool_masked_pos = self._resize_to_2d(bool_masked_pos) | |
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index | |
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :] | |
masked_tokens = mim_labels.ne(self.ce_ignore_index) | |
mim_labels_filtered = mim_labels[masked_tokens] | |
sequence_for_image = sequence_for_image[masked_tokens, :] | |
mim_logits = self.mim_head(sequence_for_image) | |
if return_loss: | |
mim_loss = nn.functional.cross_entropy( | |
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) | |
) | |
mim_loss *= self.mim_weight | |
else: | |
mim_logits = self.mim_head(sequence_for_image) | |
# Unimodal MLM Loss | |
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None: | |
sequence_for_text = text_masked_embeddings | |
if mlm_labels is not None: | |
mlm_labels = self._resize_to_2d(mlm_labels) | |
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :] | |
masked_tokens = mlm_labels.ne(self.ce_ignore_index) | |
mlm_labels_filtered = mlm_labels[masked_tokens] | |
sequence_for_text = sequence_for_text[masked_tokens, :] | |
mlm_logits = self.mlm_head(sequence_for_text) | |
if return_loss: | |
mlm_loss = nn.functional.cross_entropy( | |
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) | |
) | |
mlm_loss *= self.mlm_weight | |
else: | |
mlm_logits = self.mlm_head(sequence_for_text) | |
# ITM Loss | |
if self.itm_weight > 0 and multimodal_masked_embeddings is not None: | |
itm_logits = self.itm_head(multimodal_masked_embeddings) | |
if itm_labels is not None: | |
pos_pairs = itm_labels.ne(0) | |
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True])) | |
if return_loss: | |
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels) | |
itm_loss *= self.itm_weight | |
if multimodal_masked_embeddings is not None: | |
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask] | |
if mlm_labels is not None: | |
mlm_labels = mlm_labels[pos_mask] | |
if mim_labels is not None: | |
mim_labels = mim_labels[pos_mask] | |
bool_masked_pos = bool_masked_pos[pos_mask] | |
# MMM Image Loss | |
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0: | |
sequence_for_image = multimodal_masked_embeddings | |
end_index = image_masked_embeddings.size(1) - 1 | |
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :] | |
if mim_labels is not None: | |
mim_labels = self._resize_to_2d(mim_labels) | |
bool_masked_pos = self._resize_to_2d(bool_masked_pos) | |
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index | |
masked_tokens = mim_labels.ne(self.ce_ignore_index) | |
mim_labels_filtered = mim_labels[masked_tokens] | |
sequence_for_image = sequence_for_image[masked_tokens, :] | |
mmm_image_logits = self.mmm_image_head(sequence_for_image) | |
if return_loss: | |
mmm_image_loss = nn.functional.cross_entropy( | |
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) | |
) | |
mmm_image_loss *= self.mmm_image_weight | |
else: | |
mmm_image_logits = self.mmm_image_head(sequence_for_image) | |
# MMM Text Loss | |
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0: | |
sequence_for_text = multimodal_masked_embeddings | |
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :] | |
if mlm_labels is not None: | |
mlm_labels = self._resize_to_2d(mlm_labels) | |
masked_tokens = mlm_labels.ne(self.ce_ignore_index) | |
mlm_labels_filtered = mlm_labels[masked_tokens] | |
sequence_for_text = sequence_for_text[masked_tokens, :] | |
mmm_text_logits = self.mmm_text_head(sequence_for_text) | |
if return_loss: | |
mmm_text_loss = nn.functional.cross_entropy( | |
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) | |
) | |
mmm_text_loss *= self.mmm_text_weight | |
else: | |
mmm_text_logits = self.mmm_text_head(sequence_for_text) | |
# Global Contrastive Loss | |
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0: | |
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :]) | |
text_embedding = nn.functional.normalize(text_embedding, dim=-1) | |
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :]) | |
image_embedding = nn.functional.normalize(image_embedding, dim=-1) | |
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX) | |
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head( | |
image_embedding, text_embedding, self.flava.logit_scale | |
) | |
# Apply ITM negative mask if any | |
if pos_mask is not None: | |
logits_per_image = logits_per_image[pos_mask] | |
logits_per_text = logits_per_text[pos_mask] | |
gc_labels = gc_labels[pos_mask] | |
if return_loss: | |
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels) | |
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels) | |
gc_loss = (gc_loss_image + gc_loss_text) / 2 | |
gc_loss *= self.global_contrastive_weight | |
flava_losses = FlavaLosses( | |
mim=mim_loss, | |
mlm=mlm_loss, | |
itm=itm_loss, | |
global_contrastive=gc_loss, | |
mmm_image=mmm_image_loss, | |
mmm_text=mmm_text_loss, | |
) | |
if return_loss and not flava_losses.all_none(): | |
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values()) | |
if not return_dict: | |
output = ( | |
image_embeddings, | |
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None, | |
text_embeddings, | |
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None, | |
flava_output.multimodal_embeddings, | |
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None, | |
image_masked_embeddings, | |
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None, | |
text_masked_embeddings, | |
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None, | |
multimodal_masked_embeddings, | |
flava_masked_output.multimodal_output.to_tuple() | |
if flava_masked_output.multimodal_output is not None | |
else None, | |
mim_logits, | |
mlm_logits, | |
itm_logits, | |
logits_per_image, | |
logits_per_image, | |
mmm_image_logits, | |
mmm_text_logits, | |
) | |
if return_loss and not flava_losses.all_none(): | |
output = ( | |
total_loss, | |
flava_losses, | |
) + output | |
# Filter None as transformer by default won't handle it | |
return tuple(x for x in output if x is None) | |
return FlavaForPreTrainingOutput( | |
loss=total_loss, | |
loss_info=flava_losses, | |
image_embeddings=image_embeddings, | |
image_output=flava_output.image_output, | |
text_embeddings=text_embeddings, | |
text_output=flava_output.text_output, | |
multimodal_embeddings=flava_output.multimodal_embeddings, | |
multimodal_output=flava_output.multimodal_output, | |
image_masked_embeddings=image_masked_embeddings, | |
image_masked_output=flava_masked_output.image_output, | |
text_masked_embeddings=text_masked_embeddings, | |
text_masked_output=flava_masked_output.text_output, | |
multimodal_masked_embeddings=multimodal_masked_embeddings, | |
multimodal_masked_output=flava_masked_output.multimodal_output, | |
mim_logits=mim_logits, | |
mlm_logits=mlm_logits, | |
itm_logits=itm_logits, | |
contrastive_logits_per_image=logits_per_image, | |
contrastive_logits_per_text=logits_per_text, | |
mmm_image_logits=mmm_image_logits, | |
mmm_text_logits=mmm_text_logits, | |
) | |