Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/focalnet
/modeling_focalnet.py
# coding=utf-8 | |
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch FocalNet model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import BackboneOutput | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from ...utils.backbone_utils import BackboneMixin | |
from .configuration_focalnet import FocalNetConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "FocalNetConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny" | |
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
class FocalNetEncoderOutput(ModelOutput): | |
""" | |
FocalNet encoder's outputs, with potential hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class FocalNetModelOutput(ModelOutput): | |
""" | |
FocalNet model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): | |
Average pooling of the last layer hidden-state. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
pooler_output: Optional[torch.FloatTensor] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class FocalNetMaskedImageModelingOutput(ModelOutput): | |
""" | |
FocalNet masked image model outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): | |
Masked image modeling (MLM) loss. | |
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Reconstructed pixel values. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
reconstruction: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class FocalNetImageClassifierOutput(ModelOutput): | |
""" | |
FocalNet outputs for image classification. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of | |
shape `(batch_size, hidden_size, height, width)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to | |
include the spatial dimensions. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class FocalNetEmbeddings(nn.Module): | |
""" | |
Construct the patch embeddings and layernorm. Optionally, also the mask token. | |
""" | |
def __init__(self, config, use_mask_token=False): | |
super().__init__() | |
self.patch_embeddings = FocalNetPatchEmbeddings( | |
config=config, | |
image_size=config.image_size, | |
patch_size=config.patch_size, | |
num_channels=config.num_channels, | |
embed_dim=config.embed_dim, | |
use_conv_embed=config.use_conv_embed, | |
is_stem=True, | |
) | |
self.patch_grid = self.patch_embeddings.grid_size | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None | |
self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None | |
) -> Tuple[torch.Tensor]: | |
embeddings, output_dimensions = self.patch_embeddings(pixel_values) | |
embeddings = self.norm(embeddings) | |
batch_size, seq_len, _ = embeddings.size() | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) | |
# replace the masked visual tokens by mask_tokens | |
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask | |
embeddings = self.dropout(embeddings) | |
return embeddings, output_dimensions | |
class FocalNetPatchEmbeddings(nn.Module): | |
def __init__( | |
self, | |
config, | |
image_size, | |
patch_size, | |
num_channels, | |
embed_dim, | |
add_norm=False, | |
use_conv_embed=False, | |
is_stem=False, | |
): | |
super().__init__() | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) | |
if use_conv_embed: | |
# if we choose to use conv embedding, then we treat the stem and non-stem differently | |
if is_stem: | |
kernel_size = 7 | |
padding = 2 | |
stride = 4 | |
else: | |
kernel_size = 3 | |
padding = 1 | |
stride = 2 | |
self.projection = nn.Conv2d( | |
num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | |
) | |
else: | |
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if add_norm: | |
self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
else: | |
self.norm = None | |
def maybe_pad(self, pixel_values, height, width): | |
if width % self.patch_size[1] != 0: | |
pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
if height % self.patch_size[0] != 0: | |
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) | |
pixel_values = nn.functional.pad(pixel_values, pad_values) | |
return pixel_values | |
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: | |
_, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
# pad the input to be divisible by self.patch_size, if needed | |
pixel_values = self.maybe_pad(pixel_values, height, width) | |
embeddings = self.projection(pixel_values) | |
_, _, height, width = embeddings.shape | |
output_dimensions = (height, width) | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
if self.norm is not None: | |
embeddings = self.norm(embeddings) | |
return embeddings, output_dimensions | |
# Copied from transformers.models.beit.modeling_beit.drop_path | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet | |
class FocalNetDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class FocalNetModulation(nn.Module): | |
def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0): | |
super().__init__() | |
self.dim = dim | |
self.focal_window = config.focal_windows[index] | |
self.focal_level = config.focal_levels[index] | |
self.focal_factor = focal_factor | |
self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation | |
self.normalize_modulator = config.normalize_modulator | |
self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias) | |
self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) | |
self.activation = nn.GELU() | |
self.projection_out = nn.Linear(dim, dim) | |
self.projection_dropout = nn.Dropout(projection_dropout) | |
self.focal_layers = nn.ModuleList() | |
self.kernel_sizes = [] | |
for k in range(self.focal_level): | |
kernel_size = self.focal_factor * k + self.focal_window | |
self.focal_layers.append( | |
nn.Sequential( | |
nn.Conv2d( | |
dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False | |
), | |
nn.GELU(), | |
) | |
) | |
self.kernel_sizes.append(kernel_size) | |
if self.use_post_layernorm_in_modulation: | |
self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
def forward(self, hidden_state): | |
""" | |
Args: | |
hidden_state: | |
Input features with shape of (batch_size, height, width, num_channels) | |
""" | |
num_channels = hidden_state.shape[-1] | |
# pre linear projection | |
x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous() | |
q, ctx, self.gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1) | |
# context aggreation | |
ctx_all = 0 | |
for level in range(self.focal_level): | |
ctx = self.focal_layers[level](ctx) | |
ctx_all = ctx_all + ctx * self.gates[:, level : level + 1] | |
ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) | |
ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level :] | |
# normalize context | |
if self.normalize_modulator: | |
ctx_all = ctx_all / (self.focal_level + 1) | |
# focal modulation | |
self.modulator = self.projection_context(ctx_all) | |
x_out = q * self.modulator | |
x_out = x_out.permute(0, 2, 3, 1).contiguous() | |
if self.use_post_layernorm_in_modulation: | |
x_out = self.layernorm(x_out) | |
# post linear porjection | |
x_out = self.projection_out(x_out) | |
x_out = self.projection_dropout(x_out) | |
return x_out | |
class FocalNetMlp(nn.Module): | |
def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.activation = ACT2FN[config.hidden_act] | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, hidden_state): | |
hidden_state = self.fc1(hidden_state) | |
hidden_state = self.activation(hidden_state) | |
hidden_state = self.drop(hidden_state) | |
hidden_state = self.fc2(hidden_state) | |
hidden_state = self.drop(hidden_state) | |
return hidden_state | |
class FocalNetLayer(nn.Module): | |
r"""Focal Modulation Network layer (block). | |
Args: | |
config (`FocalNetConfig`): | |
Model config. | |
index (`int`): | |
Layer index. | |
dim (`int`): | |
Number of input channels. | |
input_resolution (`Tuple[int]`): | |
Input resulotion. | |
drop_path (`float`, *optional*, defaults to 0.0): | |
Stochastic depth rate. | |
""" | |
def __init__(self, config, index, dim, input_resolution, drop_path=0.0): | |
super().__init__() | |
self.config = config | |
# layer-specific attributes | |
self.dim = dim | |
self.input_resolution = input_resolution | |
# general attributes | |
self.drop = config.hidden_dropout_prob | |
self.use_post_layernorm = config.use_post_layernorm | |
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.modulation = FocalNetModulation( | |
config=config, | |
index=index, | |
dim=dim, | |
projection_dropout=self.drop, | |
) | |
self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
mlp_hidden_dim = int(dim * config.mlp_ratio) | |
self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop) | |
self.gamma_1 = 1.0 | |
self.gamma_2 = 1.0 | |
if config.use_layerscale: | |
self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) | |
def forward(self, hidden_state, input_dimensions): | |
height, width = input_dimensions | |
batch_size, _, num_channels = hidden_state.shape | |
shortcut = hidden_state | |
# Focal Modulation | |
hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state) | |
hidden_state = hidden_state.view(batch_size, height, width, num_channels) | |
hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels) | |
hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state) | |
# FFN | |
hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state) | |
hidden_state = hidden_state + self.drop_path( | |
self.gamma_2 | |
* (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state))) | |
) | |
return hidden_state | |
class FocalNetStage(nn.Module): | |
def __init__(self, config, index, input_resolution): | |
super().__init__() | |
self.config = config | |
self.num_stages = len(config.depths) | |
embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)] | |
dim = embed_dim[index] | |
out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None | |
downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])] | |
self.layers = nn.ModuleList( | |
[ | |
FocalNetLayer( | |
config=config, | |
index=index, | |
dim=dim, | |
input_resolution=input_resolution, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
) | |
for i in range(config.depths[index]) | |
] | |
) | |
if downsample is not None: | |
self.downsample = downsample( | |
config=config, | |
image_size=input_resolution, | |
patch_size=2, | |
num_channels=dim, | |
embed_dim=out_dim, | |
add_norm=True, | |
use_conv_embed=config.use_conv_embed, | |
is_stem=False, | |
) | |
else: | |
self.downsample = None | |
self.pointing = False | |
def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]: | |
height, width = input_dimensions | |
for layer_module in self.layers: | |
hidden_states = layer_module(hidden_states, input_dimensions) | |
hidden_states_before_downsampling = hidden_states | |
if self.downsample is not None: | |
height, width = input_dimensions | |
hidden_states = hidden_states.transpose(1, 2).reshape( | |
hidden_states_before_downsampling.shape[0], -1, height, width | |
) | |
hidden_states, output_dimensions = self.downsample(hidden_states) | |
else: | |
output_dimensions = (height, width, height, width) | |
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) | |
return stage_outputs | |
class FocalNetEncoder(nn.Module): | |
def __init__(self, config, grid_size): | |
super().__init__() | |
self.num_stages = len(config.depths) | |
self.config = config | |
self.stages = nn.ModuleList( | |
[ | |
FocalNetStage( | |
config=config, | |
index=i_layer, | |
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), | |
) | |
for i_layer in range(self.num_stages) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
output_hidden_states: Optional[bool] = False, | |
output_hidden_states_before_downsampling: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, FocalNetEncoderOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_reshaped_hidden_states = () if output_hidden_states else None | |
if output_hidden_states: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
for i, stage_module in enumerate(self.stages): | |
if self.gradient_checkpointing and self.training: | |
stage_outputs = self._gradient_checkpointing_func( | |
stage_module.__call__, | |
hidden_states, | |
input_dimensions, | |
) | |
else: | |
stage_outputs = stage_module(hidden_states, input_dimensions) | |
hidden_states = stage_outputs[0] | |
hidden_states_before_downsampling = stage_outputs[1] | |
output_dimensions = stage_outputs[2] | |
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) | |
if output_hidden_states and output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states_before_downsampling.shape | |
# rearrange b (h w) c -> b c h w | |
# here we use the original (not downsampled) height and width | |
reshaped_hidden_state = hidden_states_before_downsampling.view( | |
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size | |
) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states_before_downsampling,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
elif output_hidden_states and not output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange b (h w) c -> b c h w | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) | |
return FocalNetEncoderOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
reshaped_hidden_states=all_reshaped_hidden_states, | |
) | |
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->FocalNet,swin->focalnet | |
class FocalNetPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = FocalNetConfig | |
base_model_prefix = "focalnet" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["FocalNetStage"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
FOCALNET_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
FOCALNET_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`AutoImageProcessor.__call__`] for details. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class FocalNetModel(FocalNetPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True, use_mask_token=False): | |
super().__init__(config) | |
self.config = config | |
self.num_stages = len(config.depths) | |
self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) | |
self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token) | |
self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid) | |
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) | |
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, FocalNetModelOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
""" | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
input_dimensions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = None | |
if self.pooler is not None: | |
pooled_output = self.pooler(sequence_output.transpose(1, 2)) | |
pooled_output = torch.flatten(pooled_output, 1) | |
if not return_dict: | |
output = (sequence_output, pooled_output) + encoder_outputs[1:] | |
return output | |
return FocalNetModelOutput( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, | |
) | |
class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True) | |
self.num_stages = len(config.depths) | |
num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) | |
self.decoder = nn.Sequential( | |
nn.Conv2d( | |
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 | |
), | |
nn.PixelShuffle(config.encoder_stride), | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, FocalNetMaskedImageModelingOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192") | |
>>> config = FocalNetConfig() | |
>>> model = FocalNetForMaskedImageModeling(config) | |
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 | |
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values | |
>>> # create random boolean mask of shape (batch_size, num_patches) | |
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() | |
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) | |
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits | |
>>> list(reconstructed_pixel_values.shape) | |
[1, 3, 192, 192] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.focalnet( | |
pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
# Reshape to (batch_size, num_channels, height, width) | |
sequence_output = sequence_output.transpose(1, 2) | |
batch_size, num_channels, sequence_length = sequence_output.shape | |
height = width = math.floor(sequence_length**0.5) | |
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) | |
# Reconstruct pixel values | |
reconstructed_pixel_values = self.decoder(sequence_output) | |
masked_im_loss = None | |
if bool_masked_pos is not None: | |
size = self.config.image_size // self.config.patch_size | |
bool_masked_pos = bool_masked_pos.reshape(-1, size, size) | |
mask = ( | |
bool_masked_pos.repeat_interleave(self.config.patch_size, 1) | |
.repeat_interleave(self.config.patch_size, 2) | |
.unsqueeze(1) | |
.contiguous() | |
) | |
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") | |
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels | |
if not return_dict: | |
output = (reconstructed_pixel_values,) + outputs[2:] | |
return ((masked_im_loss,) + output) if masked_im_loss is not None else output | |
return FocalNetMaskedImageModelingOutput( | |
loss=masked_im_loss, | |
reconstruction=reconstructed_pixel_values, | |
hidden_states=outputs.hidden_states, | |
reshaped_hidden_states=outputs.reshaped_hidden_states, | |
) | |
class FocalNetForImageClassification(FocalNetPreTrainedModel): | |
# Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.focalnet = FocalNetModel(config) | |
# Classifier head | |
self.classifier = ( | |
nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, FocalNetImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.focalnet( | |
pixel_values, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return FocalNetImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
reshaped_hidden_states=outputs.reshaped_hidden_states, | |
) | |
class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin): | |
def __init__(self, config: FocalNetConfig): | |
super().__init__(config) | |
super()._init_backbone(config) | |
self.num_features = [config.embed_dim] + config.hidden_sizes | |
self.focalnet = FocalNetModel(config) | |
# initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: torch.Tensor, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> BackboneOutput: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, AutoBackbone | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf") | |
>>> model = AutoBackbone.from_pretrained("microsoft/focalnet-tiny-lrf") | |
>>> inputs = processor(image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
outputs = self.focalnet(pixel_values, output_hidden_states=True, return_dict=True) | |
hidden_states = outputs.reshaped_hidden_states | |
feature_maps = () | |
for idx, stage in enumerate(self.stage_names): | |
if stage in self.out_features: | |
feature_maps += (hidden_states[idx],) | |
if not return_dict: | |
output = (feature_maps,) | |
if output_hidden_states: | |
output += (outputs.hidden_states,) | |
return output | |
return BackboneOutput( | |
feature_maps=feature_maps, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=None, | |
) | |