Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/fsmt
/configuration_fsmt.py
# coding=utf-8 | |
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""FSMT configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class DecoderConfig(PretrainedConfig): | |
r""" | |
Configuration class for FSMT's decoder specific things. note: this is a private helper class | |
""" | |
model_type = "fsmt_decoder" | |
def __init__(self, vocab_size=0, bos_token_id=0): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.bos_token_id = bos_token_id | |
class FSMTConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`FSMTModel`]. It is used to instantiate a FSMT | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the FSMT | |
[facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
langs (`List[str]`): | |
A list with source language and target_language (e.g., ['en', 'ru']). | |
src_vocab_size (`int`): | |
Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed to the forward method in the encoder. | |
tgt_vocab_size (`int`): | |
Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed to the forward method in the decoder. | |
d_model (`int`, *optional*, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
encoder_layers (`int`, *optional*, defaults to 12): | |
Number of encoder layers. | |
decoder_layers (`int`, *optional*, defaults to 12): | |
Number of decoder layers. | |
encoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
encoder_ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
activation_function (`str` or `Callable`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
scale_embedding (`bool`, *optional*, defaults to `True`): | |
Scale embeddings by diving by sqrt(d_model). | |
bos_token_id (`int`, *optional*, defaults to 0) | |
Beginning of stream token id. | |
pad_token_id (`int`, *optional*, defaults to 1) | |
Padding token id. | |
eos_token_id (`int`, *optional*, defaults to 2) | |
End of stream token id. | |
decoder_start_token_id (`int`, *optional*): | |
This model starts decoding with `eos_token_id` | |
encoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
Google "layerdrop arxiv", as its not explainable in one line. | |
decoder_layerdrop (`float`, *optional*, defaults to 0.0): | |
Google "layerdrop arxiv", as its not explainable in one line. | |
is_encoder_decoder (`bool`, *optional*, defaults to `True`): | |
Whether this is an encoder/decoder model. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie input and output embeddings. | |
num_beams (`int`, *optional*, defaults to 5) | |
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means | |
no beam search. | |
length_penalty (`float`, *optional*, defaults to 1) | |
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to | |
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log | |
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while | |
`length_penalty` < 0.0 encourages shorter sequences. | |
early_stopping (`bool`, *optional*, defaults to `False`) | |
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search | |
when at least `num_beams` sentences are finished per batch or not. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
forced_eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the token to force as the last generated token when `max_length` is reached. Usually set to | |
`eos_token_id`. | |
Examples: | |
```python | |
>>> from transformers import FSMTConfig, FSMTModel | |
>>> # Initializing a FSMT facebook/wmt19-en-ru style configuration | |
>>> config = FSMTConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = FSMTModel(config) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "fsmt" | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
# update the defaults from config file | |
def __init__( | |
self, | |
langs=["en", "de"], | |
src_vocab_size=42024, | |
tgt_vocab_size=42024, | |
activation_function="relu", | |
d_model=1024, | |
max_length=200, | |
max_position_embeddings=1024, | |
encoder_ffn_dim=4096, | |
encoder_layers=12, | |
encoder_attention_heads=16, | |
encoder_layerdrop=0.0, | |
decoder_ffn_dim=4096, | |
decoder_layers=12, | |
decoder_attention_heads=16, | |
decoder_layerdrop=0.0, | |
attention_dropout=0.0, | |
dropout=0.1, | |
activation_dropout=0.0, | |
init_std=0.02, | |
decoder_start_token_id=2, | |
is_encoder_decoder=True, | |
scale_embedding=True, | |
tie_word_embeddings=False, | |
num_beams=5, | |
length_penalty=1.0, | |
early_stopping=False, | |
use_cache=True, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
forced_eos_token_id=2, | |
**common_kwargs, | |
): | |
self.langs = langs | |
self.src_vocab_size = src_vocab_size | |
self.tgt_vocab_size = tgt_vocab_size | |
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = self.num_hidden_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layerdrop = decoder_layerdrop | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_layers = decoder_layers | |
self.decoder_attention_heads = decoder_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.init_std = init_std # Normal(0, this parameter) | |
self.activation_function = activation_function | |
self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id) | |
if "decoder" in common_kwargs: | |
del common_kwargs["decoder"] | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
# 3 Types of Dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.dropout = dropout | |
self.use_cache = use_cache | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
decoder_start_token_id=decoder_start_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
tie_word_embeddings=tie_word_embeddings, | |
forced_eos_token_id=forced_eos_token_id, | |
max_length=max_length, | |
num_beams=num_beams, | |
length_penalty=length_penalty, | |
early_stopping=early_stopping, | |
**common_kwargs, | |
) | |