Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/fuyu
/modeling_fuyu.py
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Fuyu model.""" | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from ...modeling_outputs import CausalLMOutputWithPast | |
from ...modeling_utils import PreTrainedModel | |
from ...models.auto.modeling_auto import AutoModelForCausalLM | |
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings | |
from .configuration_fuyu import FuyuConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "FuyuConfig" | |
FUYU_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`FuyuConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class FuyuPreTrainedModel(PreTrainedModel): | |
config_class = FuyuConfig | |
base_model_prefix = "fuyu" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [] | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
FUYU_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*): | |
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the | |
hidden size of the model. | |
image_patches_indices (`torch.LongTensor` of shape `(batch_size, num_total_patches + number_of_newline_tokens + number_of_text_tokens, patch_size_ x patch_size x num_channels )`, *optional*): | |
Indices indicating at which position the image_patches have to be inserted in input_embeds. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class FuyuForCausalLM(FuyuPreTrainedModel): | |
def __init__(self, config: FuyuConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.text_config.vocab_size | |
self.language_model = AutoModelForCausalLM.from_config( | |
config.text_config, attn_implementation=config._attn_implementation | |
) | |
self.vision_embed_tokens = nn.Linear( | |
config.patch_size * config.patch_size * config.num_channels, config.hidden_size | |
) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.language_model.set_input_embeddings(value) | |
def get_output_embeddings(self): | |
return self.language_model.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
self.language_model.set_output_embeddings(new_embeddings) | |
def set_decoder(self, decoder): | |
self.language_model.set_decoder(decoder) | |
def get_decoder(self): | |
return self.language_model.get_decoder() | |
def tie_weights(self): | |
return self.language_model.tie_weights() | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
# TODO: config.vocab_size is deprecated and will be removed in v4.43. | |
# `resize_token_embeddings` should work from `modeling_utils.py`` | |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
self.config.text_config.vocab_size = model_embeds.num_embeddings | |
self.config.vocab_size = model_embeds.num_embeddings | |
self.vocab_size = model_embeds.num_embeddings | |
return model_embeds | |
def gather_continuous_embeddings( | |
self, | |
word_embeddings: torch.Tensor, | |
continuous_embeddings: List[torch.Tensor], | |
image_patch_input_indices: torch.Tensor, | |
) -> torch.Tensor: | |
"""This function places the continuous_embeddings into the word_embeddings at the locations | |
indicated by image_patch_input_indices. Different batch elements can have different numbers of continuous | |
embeddings. | |
Args: | |
word_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Tensor of word embeddings. | |
continuous_embeddings (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`): | |
Tensor of continuous embeddings. The length of the list is the batch size. Each entry is shape | |
[num_image_embeddings, hidden], and num_image_embeddings needs to match the number of non-negative | |
indices in image_patch_input_indices for that batch element. | |
image_patch_input_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Tensor of indices of the image patches in the input_ids tensor. | |
""" | |
if not (word_embeddings.shape[0] == len(continuous_embeddings)): | |
raise ValueError( | |
f"Batch sizes must match! Got {len(continuous_embeddings)=} and {word_embeddings.shape[0]=}" | |
) | |
output_embeddings = word_embeddings.clone() | |
for batch_idx in range(word_embeddings.shape[0]): | |
# First, find the positions of all the non-negative values in image_patch_input_indices, those are the | |
# positions in word_embeddings that we want to replace with content from continuous_embeddings. | |
dst_indices = torch.nonzero(image_patch_input_indices[batch_idx] >= 0, as_tuple=True)[0] | |
# Next look up those indices in image_patch_input_indices to find the indices in continuous_embeddings that we | |
# want to use to replace the values in word_embeddings. | |
src_indices = image_patch_input_indices[batch_idx][dst_indices] | |
# Check if we have more indices than embeddings. Note that we could have fewer indices if images got truncated. | |
if src_indices.shape[0] > continuous_embeddings[batch_idx].shape[0]: | |
raise ValueError( | |
f"Number of continuous embeddings {continuous_embeddings[batch_idx].shape=} does not match " | |
f"number of continuous token ids {src_indices.shape=} in batch element {batch_idx}." | |
) | |
output_embeddings[batch_idx, dst_indices] = continuous_embeddings[batch_idx][src_indices] | |
return output_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
image_patches: torch.Tensor = None, # [batch_size, num_total_patches, patch_size_ x patch_size x num_channels ] | |
image_patches_indices: torch.Tensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import FuyuProcessor, FuyuForCausalLM | |
>>> from PIL import Image | |
>>> import requests | |
>>> processor = FuyuProcessor.from_pretrained("adept/fuyu-8b") | |
>>> model = FuyuForCausalLM.from_pretrained("adept/fuyu-8b") | |
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> prompt = "Generate a coco-style caption.\n" | |
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> generated_ids = model.generate(**inputs, max_new_tokens=7) | |
>>> generation_text = processor.batch_decode(generated_ids[:, -7:], skip_special_tokens=True) | |
>>> print(generation_text[0]) | |
A blue bus parked on the side of a road. | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either input_is or inputs_embeds") | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0) | |
if inputs_embeds is None: | |
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) | |
if image_patches is not None and past_key_values is None: | |
patch_embeddings = [ | |
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype)) | |
.squeeze(0) | |
.to(inputs_embeds.device) | |
for patch in image_patches | |
] | |
inputs_embeds = self.gather_continuous_embeddings( | |
word_embeddings=inputs_embeds, | |
continuous_embeddings=patch_embeddings, | |
image_patch_input_indices=image_patches_indices, | |
) | |
outputs = self.language_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
labels=labels, | |
use_cache=use_cache, | |
return_dict=return_dict, | |
) | |
return outputs | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
image_patches=None, | |
image_patches_indices=None, | |
**kwargs, | |
): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
if image_patches_indices is not None: | |
model_inputs["image_patches_indices"] = image_patches_indices | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"image_patches_indices": image_patches_indices if past_key_values is None else None, | |
"image_patches": image_patches if past_key_values is None else None, | |
} | |
) | |
return model_inputs | |