Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/gemma
/tokenization_gemma.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Gemma.""" | |
import os | |
from shutil import copyfile | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...utils import logging | |
if TYPE_CHECKING: | |
pass | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} | |
SPIECE_UNDERLINE = "▁" | |
class GemmaTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is | |
no padding token in the original model. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`): | |
The end of sequence token. | |
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`): | |
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by | |
attention mechanisms or loss computation. | |
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
add_bos_token (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an `bos_token` at the start of sequences. | |
add_eos_token (`bool`, *optional*, defaults to `False`): | |
Whether or not to add an `eos_token` at the end of sequences. | |
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | |
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like | |
extra spaces. | |
use_default_system_prompt (`bool`, *optional*, defaults to `False`): | |
Whether or not the default system prompt for Gemma should be used. | |
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to add spaces between special tokens. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file, | |
unk_token="<unk>", | |
bos_token="<bos>", | |
eos_token="<eos>", | |
pad_token="<pad>", | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
add_bos_token=True, | |
add_eos_token=False, | |
clean_up_tokenization_spaces=False, | |
use_default_system_prompt=False, | |
spaces_between_special_tokens=False, | |
**kwargs, | |
): | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token | |
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token | |
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token | |
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token | |
self.vocab_file = vocab_file | |
self.add_bos_token = add_bos_token | |
self.add_eos_token = add_eos_token | |
self.use_default_system_prompt = use_default_system_prompt | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(vocab_file) | |
super().__init__( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
add_bos_token=add_bos_token, | |
add_eos_token=add_eos_token, | |
sp_model_kwargs=self.sp_model_kwargs, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
use_default_system_prompt=use_default_system_prompt, | |
spaces_between_special_tokens=spaces_between_special_tokens, | |
**kwargs, | |
) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__getstate__ | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
state["sp_model_proto"] = self.sp_model.serialized_model_proto() | |
return state | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.__setstate__ | |
def __setstate__(self, d): | |
self.__dict__ = d | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.LoadFromSerializedProto(self.sp_model_proto) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.vocab_size | |
def vocab_size(self): | |
"""Returns vocab size""" | |
return self.sp_model.get_piece_size() | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_vocab | |
def get_vocab(self): | |
"""Returns vocab as a dict""" | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text, **kwargs): | |
""" | |
Returns a tokenized string. The Gemma tokenizer never adds a prefix space. | |
""" | |
return self.sp_model.encode(text, out_type=str) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_token_to_id | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.sp_model.piece_to_id(token) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_id_to_token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
token = self.sp_model.IdToPiece(index) | |
return token | |
def _decode( | |
self, | |
token_ids: List[int], | |
skip_special_tokens: bool = False, | |
spaces_between_special_tokens: bool = False, | |
**kwargs, | |
) -> str: | |
sub_texts = [] | |
current_sub_text = [] | |
for ids in token_ids: | |
if skip_special_tokens and ids in self.all_special_ids: | |
continue | |
if ids in self._added_tokens_decoder: | |
if current_sub_text: | |
sub_texts.append(self.sp_model.decode(current_sub_text)) | |
sub_texts.append(self._added_tokens_decoder[ids].content) | |
current_sub_text = [] | |
else: | |
current_sub_text.append(ids) | |
if current_sub_text: | |
sub_texts.append(self.sp_model.decode(current_sub_text)) | |
if spaces_between_special_tokens: | |
sub_texts = " ".join(sub_texts) | |
else: | |
sub_texts = "".join(sub_texts) | |
return sub_texts.replace(SPIECE_UNDERLINE, " ") | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
current_sub_tokens = [] | |
out_string = "" | |
for token in tokens: | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self._added_tokens_encoder: | |
out_string += self.sp_model.decode(current_sub_tokens) + token | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
out_string += self.sp_model.decode(current_sub_tokens) | |
return out_string | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.save_vocabulary | |
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
""" | |
Save the vocabulary and special tokens file to a directory. | |
Args: | |
save_directory (`str`): | |
The directory in which to save the vocabulary. | |
Returns: | |
`Tuple(str)`: Paths to the files saved. | |
""" | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
elif not os.path.isfile(self.vocab_file): | |
with open(out_vocab_file, "wb") as fi: | |
content_spiece_model = self.sp_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
return (out_vocab_file,) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = bos_token_id + token_ids_0 + eos_token_id | |
if token_ids_1 is not None: | |
output = output + bos_token_id + token_ids_1 + eos_token_id | |
return output | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
bos_token_id = [1] if self.add_bos_token else [] | |
eos_token_id = [1] if self.add_eos_token else [] | |
if token_ids_1 is None: | |
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id | |
return ( | |
bos_token_id | |
+ ([0] * len(token_ids_0)) | |
+ eos_token_id | |
+ bos_token_id | |
+ ([0] * len(token_ids_1)) | |
+ eos_token_id | |
) | |
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | |
sequence pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
if token_ids_1 is None, only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of ids. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | |
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | |
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) | |
if token_ids_1 is not None: | |
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) | |
return output | |