Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/git
/configuration_git.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class GitVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT | |
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the vision encoder of the GIT | |
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
Example: | |
```python | |
>>> from transformers import GitVisionConfig, GitVisionModel | |
>>> # Initializing a GitVisionConfig with microsoft/git-base style configuration | |
>>> configuration = GitVisionConfig() | |
>>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration | |
>>> model = GitVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "git_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=16, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from GITConfig | |
if config_dict.get("model_type") == "git": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class GitConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the GIT | |
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`GitVisionConfig`]. | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`GitModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 6): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
num_image_with_embedding (`int`, *optional*): | |
The number of temporal embeddings to add, in case the model is used for video captioning/VQA. | |
Examples: | |
```python | |
>>> from transformers import GitConfig, GitModel | |
>>> # Initializing a GIT microsoft/git-base style configuration | |
>>> configuration = GitConfig() | |
>>> # Initializing a model (with random weights) from the microsoft/git-base style configuration | |
>>> model = GitModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "git" | |
def __init__( | |
self, | |
vision_config=None, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=6, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=1024, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
position_embedding_type="absolute", | |
use_cache=True, | |
tie_word_embeddings=False, | |
bos_token_id=101, | |
eos_token_id=102, | |
num_image_with_embedding=None, | |
**kwargs, | |
): | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) | |
if vision_config is None: | |
vision_config = {} | |
logger.info("vision_config is None. initializing the GitVisionConfig with default values.") | |
self.vision_config = GitVisionConfig(**vision_config) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.tie_word_embeddings = tie_word_embeddings | |
self.num_image_with_embedding = num_image_with_embedding | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |