Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/gptj
/modeling_gptj.py
# coding=utf-8 | |
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch GPT-J model.""" | |
import warnings | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.fx | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutputWithPast, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
is_torch_fx_proxy, | |
logging, | |
) | |
from ...utils.model_parallel_utils import assert_device_map, get_device_map | |
from .configuration_gptj import GPTJConfig | |
if is_flash_attn_2_available(): | |
from ...modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj" | |
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B" | |
_CONFIG_FOR_DOC = "GPTJConfig" | |
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor: | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim)) | |
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float() | |
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1) | |
def get_embed_positions(embed_positions, position_ids): | |
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1) | |
def rotate_every_two(x: torch.Tensor) -> torch.Tensor: | |
x1 = x[:, :, :, ::2] | |
x2 = x[:, :, :, 1::2] | |
x = torch.stack((-x2, x1), dim=-1) | |
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)') | |
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor: | |
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) | |
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) | |
return (tensor * cos) + (rotate_every_two(tensor) * sin) | |
class GPTJAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
max_positions = config.max_position_embeddings | |
self.register_buffer( | |
"bias", | |
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( | |
1, 1, max_positions, max_positions | |
), | |
persistent=False, | |
) | |
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.is_causal = True | |
self.embed_dim = config.hidden_size | |
self.num_attention_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_attention_heads | |
if self.head_dim * self.num_attention_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" | |
f" `num_attention_heads`: {self.num_attention_heads})." | |
) | |
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()) | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) | |
self.rotary_dim = config.rotary_dim | |
pos_embd_dim = self.rotary_dim or self.embed_dim | |
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim) | |
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary): | |
""" | |
Splits hidden dim into attn_head_size and num_attention_heads | |
""" | |
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) | |
tensor = tensor.view(new_shape) | |
if rotary: | |
return tensor | |
if len(tensor.shape) == 5: | |
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features) | |
elif len(tensor.shape) == 4: | |
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
else: | |
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") | |
def _merge_heads(self, tensor, num_attention_heads, attn_head_size): | |
""" | |
Merges attn_head_size dim and num_attn_heads dim into hidden dim | |
""" | |
if len(tensor.shape) == 5: | |
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() | |
elif len(tensor.shape) == 4: | |
tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
else: | |
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") | |
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) | |
return tensor.view(new_shape) | |
def _attn( | |
self, | |
query, | |
key, | |
value, | |
attention_mask=None, | |
head_mask=None, | |
): | |
# compute causal mask from causal mask buffer | |
query_length, key_length = query.size(-2), key.size(-2) | |
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] | |
# Keep the attention weights computation in fp32 to avoid overflow issues | |
query = query.to(torch.float32) | |
key = key.to(torch.float32) | |
attn_weights = torch.matmul(query, key.transpose(-1, -2)) | |
mask_value = torch.finfo(attn_weights.dtype).min | |
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | |
attn_weights = torch.where(causal_mask, attn_weights, mask_value) | |
attn_weights = attn_weights / self.scale_attn | |
if attention_mask is not None: | |
# Apply the attention mask | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
attn_weights = attn_weights.to(value.dtype) | |
attn_weights = self.attn_dropout(attn_weights) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attn_weights = attn_weights * head_mask | |
attn_output = torch.matmul(attn_weights, value) | |
return attn_output, attn_weights | |
def _get_embed_positions(self, position_ids): | |
embed_positions = self.embed_positions | |
if embed_positions.device != position_ids.device: | |
embed_positions = embed_positions.to(position_ids.device) | |
self.embed_positions = embed_positions | |
return embed_positions.repeat(position_ids.shape[0], 1, 1) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
layer_past: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = False, | |
) -> Union[ | |
Tuple[torch.Tensor, Tuple[torch.Tensor]], | |
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], | |
]: | |
query = self.q_proj(hidden_states) | |
key = self.k_proj(hidden_states) | |
value = self.v_proj(hidden_states) | |
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) | |
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) | |
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) | |
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): | |
# The logic to conditionally copy to GPU could not be traced, so we do this | |
# every time in the torch.fx case | |
embed_positions = get_embed_positions(self.embed_positions, position_ids) | |
else: | |
embed_positions = self._get_embed_positions(position_ids) | |
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) | |
sincos = torch.gather(embed_positions, 1, repeated_position_ids) | |
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) | |
if self.rotary_dim is not None: | |
k_rot = key[:, :, :, : self.rotary_dim] | |
k_pass = key[:, :, :, self.rotary_dim :] | |
q_rot = query[:, :, :, : self.rotary_dim] | |
q_pass = query[:, :, :, self.rotary_dim :] | |
k_rot = apply_rotary_pos_emb(k_rot, sin, cos) | |
q_rot = apply_rotary_pos_emb(q_rot, sin, cos) | |
key = torch.cat([k_rot, k_pass], dim=-1) | |
query = torch.cat([q_rot, q_pass], dim=-1) | |
else: | |
key = apply_rotary_pos_emb(key, sin, cos) | |
query = apply_rotary_pos_emb(query, sin, cos) | |
key = key.permute(0, 2, 1, 3) | |
query = query.permute(0, 2, 1, 3) | |
if layer_past is not None: | |
past_key = layer_past[0] | |
past_value = layer_past[1] | |
key = torch.cat((past_key, key), dim=-2) | |
value = torch.cat((past_value, value), dim=-2) | |
if use_cache is True: | |
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation. | |
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128 | |
present = (key.to(hidden_states.dtype), value) | |
else: | |
present = None | |
# compute self-attention: V x Softmax(QK^T) | |
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) | |
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) | |
attn_output = self.out_proj(attn_output) | |
attn_output = self.resid_dropout(attn_output) | |
outputs = (attn_output, present) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs # a, present, (attentions) | |
class GPTJFlashAttention2(GPTJAttention): | |
""" | |
GPTJ flash attention module. This module inherits from `GPTJAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
layer_past: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = False, | |
) -> Union[ | |
Tuple[torch.Tensor, Tuple[torch.Tensor]], | |
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], | |
]: | |
query = self.q_proj(hidden_states) | |
key = self.k_proj(hidden_states) | |
value = self.v_proj(hidden_states) | |
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True) | |
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True) | |
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False) | |
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing(): | |
# The logic to conditionally copy to GPU could not be traced, so we do this | |
# every time in the torch.fx case | |
embed_positions = get_embed_positions(self.embed_positions, position_ids) | |
else: | |
embed_positions = self._get_embed_positions(position_ids) | |
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1]) | |
sincos = torch.gather(embed_positions, 1, repeated_position_ids) | |
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1) | |
if self.rotary_dim is not None: | |
k_rot = key[:, :, :, : self.rotary_dim] | |
k_pass = key[:, :, :, self.rotary_dim :] | |
q_rot = query[:, :, :, : self.rotary_dim] | |
q_pass = query[:, :, :, self.rotary_dim :] | |
k_rot = apply_rotary_pos_emb(k_rot, sin, cos) | |
q_rot = apply_rotary_pos_emb(q_rot, sin, cos) | |
key = torch.cat([k_rot, k_pass], dim=-1) | |
query = torch.cat([q_rot, q_pass], dim=-1) | |
else: | |
key = apply_rotary_pos_emb(key, sin, cos) | |
query = apply_rotary_pos_emb(query, sin, cos) | |
# tanspose to have the desired shape | |
# before transpose: batch_size x seq_length x num_attention_heads x head_dim | |
# after transpose: batch_size x num_attention_heads x seq_length x head_dim | |
key = key.permute(0, 2, 1, 3) | |
query = query.permute(0, 2, 1, 3) | |
# value: batch_size x num_attention_heads x seq_length x head_dim | |
if layer_past is not None: | |
past_key = layer_past[0] | |
past_value = layer_past[1] | |
key = torch.cat((past_key, key), dim=-2) | |
value = torch.cat((past_value, value), dim=-2) | |
if use_cache is True: | |
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation. | |
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128 | |
present = (key.to(hidden_states.dtype), value) | |
else: | |
present = None | |
# The Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we need to keep the original shape for query and key, and reshape value | |
# to have the correct shape. | |
key = key.permute(0, 2, 1, 3).contiguous() | |
query = query.permute(0, 2, 1, 3).contiguous() | |
value = value.permute(0, 2, 1, 3).contiguous() | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query = query.to(target_dtype) | |
key = key.to(target_dtype) | |
value = value.to(target_dtype) | |
attention_dropout = self.config.attn_pdrop if self.training else 0.0 # attn_pdrop in gptj | |
query_length = query.shape[1] | |
# Compute attention | |
attn_weights = _flash_attention_forward( | |
query, | |
key, | |
value, | |
attention_mask, | |
query_length, | |
dropout=attention_dropout, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
# Reshape outputs | |
attn_output = attn_weights.reshape( | |
attn_weights.shape[0], attn_weights.shape[1], attn_weights.shape[2] * attn_weights.shape[3] | |
) | |
attn_output = self.out_proj(attn_output) | |
attn_output = self.resid_dropout(attn_output) | |
outputs = (attn_output, present) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
GPTJ_ATTENTION_CLASSES = { | |
"eager": GPTJAttention, | |
"flash_attention_2": GPTJFlashAttention2, | |
} | |
class GPTJMLP(nn.Module): | |
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim | |
super().__init__() | |
embed_dim = config.n_embd | |
self.fc_in = nn.Linear(embed_dim, intermediate_size) | |
self.fc_out = nn.Linear(intermediate_size, embed_dim) | |
self.act = ACT2FN[config.activation_function] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor: | |
hidden_states = self.fc_in(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.fc_out(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class GPTJBlock(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd | |
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config) | |
self.mlp = GPTJMLP(inner_dim, config) | |
def forward( | |
self, | |
hidden_states: Optional[torch.FloatTensor], | |
layer_past: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = False, | |
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
residual = hidden_states | |
hidden_states = self.ln_1(hidden_states) | |
attn_outputs = self.attn( | |
hidden_states=hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
outputs = attn_outputs[1:] | |
feed_forward_hidden_states = self.mlp(hidden_states) | |
hidden_states = attn_output + feed_forward_hidden_states + residual | |
if use_cache: | |
outputs = (hidden_states,) + outputs | |
else: | |
outputs = (hidden_states,) + outputs[1:] | |
return outputs # hidden_states, present, (attentions) | |
class GPTJPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = GPTJConfig | |
base_model_prefix = "transformer" | |
is_parallelizable = True | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["GPTJBlock"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_param_buffer_assignment = False | |
def __init__(self, *inputs, **kwargs): | |
super().__init__(*inputs, **kwargs) | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear,)): | |
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
GPTJ_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
GPTJ_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
PARALLELIZE_DOCSTRING = r""" | |
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute | |
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks | |
across all devices. | |
Args: | |
device_map (`Dict[int, list]`, *optional*): | |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the | |
following number of attention modules: | |
- gpt-j-6B: 28 | |
Example: | |
```python | |
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules: | |
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") | |
device_map = { | |
0: [0, 1, 2, 3, 4, 5, 6], | |
1: [7, 8, 9, 10, 11, 12, 13], | |
2: [14, 15, 16, 17, 18, 19, 20], | |
3: [21, 22, 23, 24, 25, 26, 27], | |
} | |
model.parallelize(device_map) | |
``` | |
""" | |
DEPARALLELIZE_DOCSTRING = r""" | |
Moves the model to CPU from a model parallel state. | |
Example: | |
```python | |
# On a 4 GPU machine with gpt-j-6B: | |
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") | |
device_map = { | |
0: [0, 1, 2, 3, 4, 5, 6], | |
1: [7, 8, 9, 10, 11, 12, 13], | |
2: [14, 15, 16, 17, 18, 19, 20], | |
3: [21, 22, 23, 24, 25, 26, 27], | |
} | |
model.parallelize(device_map) # Splits the model across several devices | |
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
``` | |
""" | |
class GPTJModel(GPTJPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embed_dim = config.n_embd | |
self.vocab_size = config.vocab_size | |
self.wte = nn.Embedding(config.vocab_size, self.embed_dim) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)]) | |
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" | |
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," | |
" ...}", | |
FutureWarning, | |
) | |
# Check validity of device_map | |
self.device_map = ( | |
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map | |
) | |
assert_device_map(self.device_map, len(self.h)) | |
self.model_parallel = True | |
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | |
self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
self.wte = self.wte.to(self.first_device) | |
# Load onto devices | |
for k, v in self.device_map.items(): | |
for block in v: | |
cuda_device = "cuda:" + str(k) | |
self.h[block] = self.h[block].to(cuda_device) | |
# ln_f to last | |
self.ln_f = self.ln_f.to(self.last_device) | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.model_parallel = False | |
self.device_map = None | |
self.first_device = "cpu" | |
self.last_device = "cpu" | |
self.wte = self.wte.to("cpu") | |
for index in range(len(self.h)): | |
self.h[index] = self.h[index].to("cpu") | |
self.ln_f = self.ln_f.to("cpu") | |
torch.cuda.empty_cache() | |
def get_input_embeddings(self): | |
return self.wte | |
def set_input_embeddings(self, new_embeddings): | |
self.wte = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
batch_size = input_ids.shape[0] | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size = inputs_embeds.shape[0] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
if past_key_values is None: | |
past_length = 0 | |
past_key_values = tuple([None] * len(self.h)) | |
else: | |
past_length = past_key_values[0][0].size(-2) | |
if position_ids is None: | |
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0) | |
if not self._use_flash_attention_2: | |
# Attention mask. | |
if attention_mask is not None: | |
if batch_size <= 0: | |
raise ValueError("batch_size has to be defined and > 0") | |
attention_mask = attention_mask.view(batch_size, -1) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask[:, None, None, :] | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and the dtype's smallest value for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x num_attention_heads x N x N | |
# head_mask has shape n_layer x batch x num_attention_heads x N x N | |
head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
if inputs_embeds is None: | |
inputs_embeds = self.wte(input_ids) | |
hidden_states = inputs_embeds | |
if token_type_ids is not None: | |
token_type_embeds = self.wte(token_type_ids) | |
hidden_states = hidden_states + token_type_embeds | |
hidden_states = self.drop(hidden_states) | |
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
presents = () if use_cache else None | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
# Model parallel | |
if self.model_parallel: | |
torch.cuda.set_device(hidden_states.device) | |
# Ensure layer_past is on same device as hidden_states (might not be correct) | |
if layer_past is not None: | |
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) | |
# Ensure that attention_mask is always on the same device as hidden_states | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(hidden_states.device) | |
if isinstance(head_mask, torch.Tensor): | |
head_mask = head_mask.to(hidden_states.device) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
outputs = self._gradient_checkpointing_func( | |
block.__call__, | |
hidden_states, | |
None, | |
attention_mask, | |
position_ids, | |
head_mask[i], | |
use_cache, | |
output_attentions, | |
) | |
else: | |
outputs = block( | |
hidden_states=hidden_states, | |
layer_past=layer_past, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask[i], | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = outputs[0] | |
if use_cache is True: | |
presents = presents + (outputs[1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
# Model Parallel: If it's the last layer for that device, put things on the next device | |
if self.model_parallel: | |
for k, v in self.device_map.items(): | |
if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
hidden_states = self.ln_f(hidden_states) | |
hidden_states = hidden_states.view(output_shape) | |
# Add last hidden state | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class GPTJForCausalLM(GPTJPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = GPTJModel(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size) | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def parallelize(self, device_map=None): | |
warnings.warn( | |
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" | |
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | |
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" | |
" 0, 'transformer.h.1': 1, ...}", | |
FutureWarning, | |
) | |
self.device_map = ( | |
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
if device_map is None | |
else device_map | |
) | |
assert_device_map(self.device_map, len(self.transformer.h)) | |
self.transformer.parallelize(self.device_map) | |
self.lm_head = self.lm_head.to(self.transformer.first_device) | |
self.model_parallel = True | |
def deparallelize(self): | |
warnings.warn( | |
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | |
FutureWarning, | |
) | |
self.transformer.deparallelize() | |
self.transformer = self.transformer.to("cpu") | |
self.lm_head = self.lm_head.to("cpu") | |
self.model_parallel = False | |
torch.cuda.empty_cache() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# Omit tokens covered by past_key_values | |
if past_key_values: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -input_ids.shape[1] :] | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
} | |
) | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
# Set device for model parallelism | |
if self.model_parallel: | |
torch.cuda.set_device(self.transformer.first_device) | |
hidden_states = hidden_states.to(self.lm_head.weight.device) | |
# make sure sampling in fp16 works correctly and | |
# compute loss in fp32 to match with mesh-tf version | |
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 | |
lm_logits = self.lm_head(hidden_states).to(torch.float32) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(lm_logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
loss = loss.to(hidden_states.dtype) | |
if not return_dict: | |
output = (lm_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
def _reorder_cache( | |
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor | |
) -> Tuple[Tuple[torch.Tensor]]: | |
""" | |
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or | |
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
beam_idx at every generation step. | |
""" | |
return tuple( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
for layer_past in past_key_values | |
) | |
class GPTJForSequenceClassification(GPTJPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPTJModel(config) | |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.transformer( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
logger.warning_once( | |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
) | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(pooled_logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |
class GPTJForQuestionAnswering(GPTJPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.transformer = GPTJModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Model parallel | |
self.model_parallel = False | |
self.device_map = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1).to(start_logits.device) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1).to(end_logits.device) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |