Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/herbert
/tokenization_herbert.py
# coding=utf-8 | |
# Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import re | |
import unicodedata | |
from typing import List, Optional, Tuple | |
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"merges_file": "merges.txt", | |
} | |
# Copied from transformers.models.xlm.tokenization_xlm.get_pairs | |
def get_pairs(word): | |
""" | |
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length | |
strings) | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
# Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct | |
def replace_unicode_punct(text): | |
""" | |
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl | |
""" | |
text = text.replace(",", ",") | |
text = re.sub(r"。\s*", ". ", text) | |
text = text.replace("、", ",") | |
text = text.replace("”", '"') | |
text = text.replace("“", '"') | |
text = text.replace("∶", ":") | |
text = text.replace(":", ":") | |
text = text.replace("?", "?") | |
text = text.replace("《", '"') | |
text = text.replace("》", '"') | |
text = text.replace(")", ")") | |
text = text.replace("!", "!") | |
text = text.replace("(", "(") | |
text = text.replace(";", ";") | |
text = text.replace("1", "1") | |
text = text.replace("」", '"') | |
text = text.replace("「", '"') | |
text = text.replace("0", "0") | |
text = text.replace("3", "3") | |
text = text.replace("2", "2") | |
text = text.replace("5", "5") | |
text = text.replace("6", "6") | |
text = text.replace("9", "9") | |
text = text.replace("7", "7") | |
text = text.replace("8", "8") | |
text = text.replace("4", "4") | |
text = re.sub(r".\s*", ". ", text) | |
text = text.replace("~", "~") | |
text = text.replace("’", "'") | |
text = text.replace("…", "...") | |
text = text.replace("━", "-") | |
text = text.replace("〈", "<") | |
text = text.replace("〉", ">") | |
text = text.replace("【", "[") | |
text = text.replace("】", "]") | |
text = text.replace("%", "%") | |
return text | |
# Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char | |
def remove_non_printing_char(text): | |
""" | |
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl | |
""" | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat.startswith("C"): | |
continue | |
output.append(char) | |
return "".join(output) | |
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize | |
def whitespace_tokenize(text): | |
"""Runs basic whitespace cleaning and splitting on a piece of text.""" | |
text = text.strip() | |
if not text: | |
return [] | |
tokens = text.split() | |
return tokens | |
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer | |
class BasicTokenizer: | |
""" | |
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | |
Args: | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
do_split_on_punc (`bool`, *optional*, defaults to `True`): | |
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture | |
the full context of the words, such as contractions. | |
""" | |
def __init__( | |
self, | |
do_lower_case=True, | |
never_split=None, | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
do_split_on_punc=True, | |
): | |
if never_split is None: | |
never_split = [] | |
self.do_lower_case = do_lower_case | |
self.never_split = set(never_split) | |
self.tokenize_chinese_chars = tokenize_chinese_chars | |
self.strip_accents = strip_accents | |
self.do_split_on_punc = do_split_on_punc | |
def tokenize(self, text, never_split=None): | |
""" | |
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. | |
Args: | |
never_split (`List[str]`, *optional*) | |
Kept for backward compatibility purposes. Now implemented directly at the base class level (see | |
[`PreTrainedTokenizer.tokenize`]) List of token not to split. | |
""" | |
# union() returns a new set by concatenating the two sets. | |
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split | |
text = self._clean_text(text) | |
# This was added on November 1st, 2018 for the multilingual and Chinese | |
# models. This is also applied to the English models now, but it doesn't | |
# matter since the English models were not trained on any Chinese data | |
# and generally don't have any Chinese data in them (there are Chinese | |
# characters in the vocabulary because Wikipedia does have some Chinese | |
# words in the English Wikipedia.). | |
if self.tokenize_chinese_chars: | |
text = self._tokenize_chinese_chars(text) | |
# prevents treating the same character with different unicode codepoints as different characters | |
unicode_normalized_text = unicodedata.normalize("NFC", text) | |
orig_tokens = whitespace_tokenize(unicode_normalized_text) | |
split_tokens = [] | |
for token in orig_tokens: | |
if token not in never_split: | |
if self.do_lower_case: | |
token = token.lower() | |
if self.strip_accents is not False: | |
token = self._run_strip_accents(token) | |
elif self.strip_accents: | |
token = self._run_strip_accents(token) | |
split_tokens.extend(self._run_split_on_punc(token, never_split)) | |
output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
return output_tokens | |
def _run_strip_accents(self, text): | |
"""Strips accents from a piece of text.""" | |
text = unicodedata.normalize("NFD", text) | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat == "Mn": | |
continue | |
output.append(char) | |
return "".join(output) | |
def _run_split_on_punc(self, text, never_split=None): | |
"""Splits punctuation on a piece of text.""" | |
if not self.do_split_on_punc or (never_split is not None and text in never_split): | |
return [text] | |
chars = list(text) | |
i = 0 | |
start_new_word = True | |
output = [] | |
while i < len(chars): | |
char = chars[i] | |
if _is_punctuation(char): | |
output.append([char]) | |
start_new_word = True | |
else: | |
if start_new_word: | |
output.append([]) | |
start_new_word = False | |
output[-1].append(char) | |
i += 1 | |
return ["".join(x) for x in output] | |
def _tokenize_chinese_chars(self, text): | |
"""Adds whitespace around any CJK character.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if self._is_chinese_char(cp): | |
output.append(" ") | |
output.append(char) | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ( | |
(cp >= 0x4E00 and cp <= 0x9FFF) | |
or (cp >= 0x3400 and cp <= 0x4DBF) # | |
or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F) # | |
): # | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xFFFD or _is_control(char): | |
continue | |
if _is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
class HerbertTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a BPE tokenizer for HerBERT. | |
Peculiarities: | |
- uses BERT's pre-tokenizer: BaseTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a | |
punctuation character will be treated separately. | |
- Such pretokenized input is BPE subtokenized | |
This tokenizer inherits from [`XLMTokenizer`] which contains most of the methods. Users should refer to the | |
superclass for more information regarding methods. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
def __init__( | |
self, | |
vocab_file, | |
merges_file, | |
tokenizer_file=None, | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
sep_token="</s>", | |
bos_token="<s>", | |
do_lowercase_and_remove_accent=False, | |
additional_special_tokens=[ | |
"<special0>", | |
"<special1>", | |
"<special2>", | |
"<special3>", | |
"<special4>", | |
"<special5>", | |
"<special6>", | |
"<special7>", | |
"<special8>", | |
"<special9>", | |
], | |
lang2id=None, | |
id2lang=None, | |
**kwargs, | |
): | |
try: | |
import sacremoses | |
except ImportError: | |
raise ImportError( | |
"You need to install sacremoses to use HerbertTokenizer. " | |
"See https://pypi.org/project/sacremoses/ for installation." | |
) | |
self.sm = sacremoses | |
# cache of sm.MosesPunctNormalizer instance | |
self.cache_moses_punct_normalizer = {} | |
# cache of sm.MosesTokenizer instance | |
self.cache_moses_tokenizer = {} | |
self.lang_with_custom_tokenizer = {"zh", "th", "ja"} | |
# True for current supported model (v1.2.0), False for XLM-17 & 100 | |
self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent | |
self.lang2id = lang2id | |
self.id2lang = id2lang | |
if lang2id is not None and id2lang is not None: | |
assert len(lang2id) == len(id2lang) | |
self.ja_word_tokenizer = None | |
self.zh_word_tokenizer = None | |
with open(vocab_file, encoding="utf-8") as vocab_handle: | |
self.encoder = json.load(vocab_handle) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
with open(merges_file, encoding="utf-8") as merges_handle: | |
merges = merges_handle.read().split("\n")[:-1] | |
merges = [tuple(merge.split()[:2]) for merge in merges] | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {} | |
super().__init__( | |
unk_token=unk_token, | |
bos_token=bos_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
additional_special_tokens=additional_special_tokens, | |
lang2id=lang2id, | |
id2lang=id2lang, | |
do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, | |
tokenizer_file=None, | |
**kwargs, | |
) | |
self.bert_pre_tokenizer = BasicTokenizer( | |
do_lower_case=False, | |
never_split=self.all_special_tokens, | |
tokenize_chinese_chars=False, | |
strip_accents=False, | |
) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case | |
def do_lower_case(self): | |
return self.do_lowercase_and_remove_accent | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm | |
def moses_punct_norm(self, text, lang): | |
if lang not in self.cache_moses_punct_normalizer: | |
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) | |
self.cache_moses_punct_normalizer[lang] = punct_normalizer | |
else: | |
punct_normalizer = self.cache_moses_punct_normalizer[lang] | |
return punct_normalizer.normalize(text) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize | |
def moses_tokenize(self, text, lang): | |
if lang not in self.cache_moses_tokenizer: | |
moses_tokenizer = self.sm.MosesTokenizer(lang=lang) | |
self.cache_moses_tokenizer[lang] = moses_tokenizer | |
else: | |
moses_tokenizer = self.cache_moses_tokenizer[lang] | |
return moses_tokenizer.tokenize(text, return_str=False, escape=False) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline | |
def moses_pipeline(self, text, lang): | |
text = replace_unicode_punct(text) | |
text = self.moses_punct_norm(text, lang) | |
text = remove_non_printing_char(text) | |
return text | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize | |
def ja_tokenize(self, text): | |
if self.ja_word_tokenizer is None: | |
try: | |
import Mykytea | |
self.ja_word_tokenizer = Mykytea.Mykytea( | |
f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" | |
) | |
except (AttributeError, ImportError): | |
logger.error( | |
"Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" | |
" (https://github.com/chezou/Mykytea-python) with the following steps" | |
) | |
logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") | |
logger.error("2. autoreconf -i") | |
logger.error("3. ./configure --prefix=$HOME/local") | |
logger.error("4. make && make install") | |
logger.error("5. pip install kytea") | |
raise | |
return list(self.ja_word_tokenizer.getWS(text)) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size | |
def vocab_size(self): | |
return len(self.encoder) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab | |
def get_vocab(self): | |
return dict(self.encoder, **self.added_tokens_encoder) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe | |
def bpe(self, token): | |
word = tuple(token[:-1]) + (token[-1] + "</w>",) | |
if token in self.cache: | |
return self.cache[token] | |
pairs = get_pairs(word) | |
if not pairs: | |
return token + "</w>" | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
else: | |
new_word.extend(word[i:j]) | |
i = j | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = " ".join(word) | |
if word == "\n </w>": | |
word = "\n</w>" | |
self.cache[token] = word | |
return word | |
def _tokenize(self, text): | |
pre_tokens = self.bert_pre_tokenizer.tokenize(text) | |
split_tokens = [] | |
for token in pre_tokens: | |
if token: | |
split_tokens.extend(list(self.bpe(token).split(" "))) | |
return split_tokens | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.decoder.get(index, self.unk_token) | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
out_string = "".join(tokens).replace("</w>", " ").strip() | |
return out_string | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An XLM sequence has the following format: | |
- single sequence: `<s> X </s>` | |
- pair of sequences: `<s> A </s> B </s>` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
bos = [self.bos_token_id] | |
sep = [self.sep_token_id] | |
if token_ids_1 is None: | |
return bos + token_ids_0 + sep | |
return bos + token_ids_0 + sep + token_ids_1 + sep | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is not None: | |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence | |
pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
merge_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
) | |
with open(vocab_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
index = 0 | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!" | |
) | |
index = token_index | |
writer.write(" ".join(bpe_tokens) + "\n") | |
index += 1 | |
return vocab_file, merge_file | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
state["sm"] = None | |
return state | |
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ | |
def __setstate__(self, d): | |
self.__dict__ = d | |
try: | |
import sacremoses | |
except ImportError: | |
raise ImportError( | |
"You need to install sacremoses to use XLMTokenizer. " | |
"See https://pypi.org/project/sacremoses/ for installation." | |
) | |
self.sm = sacremoses | |