Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/idefics
/configuration_idefics.py
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Idefics model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class IdeficsVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an | |
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Idefics-9B. | |
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `hidden_size`) | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
intermediate_size (`int`, *optional*, defaults to 5120): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
patch_size (`int`, *optional*, defaults to 14): | |
The size (resolution) of each patch. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_num_channels (`int`, *optional*, defaults to `3`): | |
Number of image channels. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization | |
testing). | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
""" | |
model_type = "idefics" | |
attribute_map = { | |
"hidden_size": "embed_dim", | |
} | |
def __init__( | |
self, | |
embed_dim=768, | |
image_size=224, | |
intermediate_size=5120, | |
patch_size=14, | |
num_hidden_layers=32, | |
num_attention_heads=16, | |
num_channels=3, | |
hidden_act="gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
self.embed_dim = embed_dim | |
self.image_size = image_size | |
self.intermediate_size = intermediate_size | |
self.patch_size = patch_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.layer_norm_eps = layer_norm_eps | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.hidden_act = hidden_act | |
super().__init__(**kwargs) | |
class IdeficsPerceiverConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an | |
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Idefics-9B. | |
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
use_resampler (`bool`, *optional*, defaults to `False`): | |
Whether or not to use the resampler | |
resampler_n_latents (`int`, *optional*, defaults to ): | |
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). | |
resampler_depth (`int`, *optional*, defaults to 6): | |
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). | |
resampler_n_heads (`int`, *optional*, defaults to 16): | |
Number of heads in each Transformer block (for multi-headed self-attention). | |
resampler_head_dim (`int`, *optional*, defaults to 96): | |
Dimensionality of each head projection in the Transformer block. | |
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): | |
Whether or not to use qk layer norms in perceiver | |
""" | |
model_type = "idefics" | |
def __init__( | |
self, | |
use_resampler=False, | |
resampler_n_latents=64, | |
resampler_depth=6, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
qk_layer_norms_perceiver=False, | |
**kwargs, | |
): | |
self.use_resampler = use_resampler | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.resampler_head_dim = resampler_head_dim | |
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver | |
super().__init__(**kwargs) | |
class IdeficsConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`IdeficsModel`]. It is used to instantiate an | |
Idefics model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Idefics-9B. | |
e.g. [HuggingFaceM4/idefics-9b](https://huggingface.co/HuggingFaceM4/idefics-9b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
additional_vocab_size (`int`, *optional*, defaults to 0): | |
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
are always trainable whereas regular vocab tokens can be frozen or not. | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Idefics model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~IdeficsModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
alpha_initializer (`str`, *optional*, defaults to `"zeros"`): | |
Initialization type for the alphas. | |
alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross | |
Attention. | |
alpha_type (`str`, *optional*, defaults to `"float"`): | |
Whether the gating alphas should be vectors or single floats. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-6): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*, defaults to 0) | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 1) | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2) | |
End of stream token id. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
cross_layer_interval (`int`, *optional*, default to 1) | |
Interval for cross attention (from text to image) layers. | |
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k | |
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers | |
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): | |
Exceptions to freezing text layers when `freeze_text_layers` is `True` | |
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head | |
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers | |
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): | |
Exceptions to freezing vision layers when `freeze_vision_layers` is `True` | |
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler | |
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict | |
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict | |
Example: | |
```python | |
>>> from transformers import IdeficsModel, IdeficsConfig | |
>>> # Initializing a Idefics idefics-9b style configuration | |
>>> configuration = IdeficsConfig() | |
>>> # Initializing a model from the idefics-9b style configuration | |
>>> model = IdeficsModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "idefics" | |
is_composition = False | |
def __init__( | |
self, | |
vocab_size=32000, | |
additional_vocab_size=0, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
dropout=0.0, | |
hidden_act="silu", | |
initializer_range=0.02, | |
alpha_initializer="zeros", | |
alphas_initializer_range=0.0, | |
alpha_type="float", | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
cross_layer_interval=1, | |
qk_layer_norms=False, | |
freeze_text_layers=True, | |
freeze_text_module_exceptions=[], | |
freeze_lm_head=False, | |
freeze_vision_layers=True, | |
freeze_vision_module_exceptions=[], | |
use_resampler=False, | |
vision_config=None, | |
perceiver_config=None, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.additional_vocab_size = additional_vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.dropout = dropout | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.alpha_initializer = alpha_initializer | |
self.alphas_initializer_range = alphas_initializer_range | |
self.alpha_type = alpha_type | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.cross_layer_interval = cross_layer_interval | |
self.qk_layer_norms = qk_layer_norms | |
self.freeze_vision_layers = freeze_vision_layers | |
self.freeze_text_layers = freeze_text_layers | |
self.freeze_text_module_exceptions = freeze_text_module_exceptions | |
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions | |
self.freeze_lm_head = freeze_lm_head | |
self.use_resampler = use_resampler | |
if perceiver_config is None: | |
self.perceiver_config = IdeficsPerceiverConfig() | |
elif isinstance(perceiver_config, dict): | |
self.perceiver_config = IdeficsPerceiverConfig(**perceiver_config) | |
elif isinstance(perceiver_config, IdeficsPerceiverConfig): | |
self.perceiver_config = perceiver_config | |
if vision_config is None: | |
self.vision_config = IdeficsVisionConfig() | |
elif isinstance(vision_config, dict): | |
self.vision_config = IdeficsVisionConfig(**vision_config) | |
elif isinstance(vision_config, IdeficsVisionConfig): | |
self.vision_config = vision_config | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
# updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
# of this object many attributes have default values and haven't yet been overridden. | |
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |