Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/idefics
/modeling_idefics.py
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Idefics model.""" | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ... import PreTrainedModel | |
from ...activations import ACT2FN | |
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa | |
from ...modeling_outputs import ModelOutput | |
from ...modeling_utils import PretrainedConfig | |
from ...pytorch_utils import ALL_LAYERNORM_LAYERS | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_idefics import IdeficsConfig | |
from .perceiver import IdeficsPerceiverResampler | |
from .vision import IdeficsVisionTransformer | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "IdeficsConfig" | |
class IdeficsBaseModelOutputWithPast(ModelOutput): | |
""" | |
Base class for Idefics model's outputs that may also contain a past key/values (to speed up sequential decoding). | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | |
hidden_size)` is output. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if | |
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, | |
encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if | |
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` | |
input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, | |
sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class IdeficsCausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Idefics causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, | |
sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
def expand_inputs_for_generation( | |
input_ids, | |
expand_size=1, | |
is_encoder_decoder=False, | |
attention_mask=None, | |
encoder_outputs=None, | |
**model_kwargs, | |
): | |
expanded_return_idx = ( | |
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device) | |
) | |
input_ids = input_ids.index_select(0, expanded_return_idx) | |
model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None) | |
model_kwargs["image_encoder_embeddings"] = model_kwargs.get("image_encoder_embeddings", None) | |
model_kwargs["perceiver_embeddings"] = model_kwargs.get("perceiver_embeddings", None) | |
model_kwargs["image_attention_mask"] = model_kwargs.get("image_attention_mask", None) | |
if "token_type_ids" in model_kwargs: | |
token_type_ids = model_kwargs["token_type_ids"] | |
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx) | |
if attention_mask is not None: | |
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx) | |
if model_kwargs["image_attention_mask"] is not None: | |
model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select( | |
0, expanded_return_idx | |
) | |
if model_kwargs["pixel_values"] is not None: | |
model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx) | |
elif model_kwargs["image_encoder_embeddings"] is not None: | |
model_kwargs["image_encoder_embeddings"] = model_kwargs["image_encoder_embeddings"].index_select( | |
0, expanded_return_idx | |
) | |
elif model_kwargs["perceiver_embeddings"] is not None: | |
model_kwargs["perceiver_embeddings"] = model_kwargs["perceiver_embeddings"].index_select( | |
0, expanded_return_idx | |
) | |
return input_ids, model_kwargs | |
def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs): | |
token_type_ids = kwargs.get("token_type_ids", None) | |
# only last token for inputs_ids if past is defined in kwargs | |
if past_key_values: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
attention_mask = kwargs.get("attention_mask", None) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
pixel_values = kwargs.get("pixel_values", None) | |
image_encoder_embeddings = kwargs.get("image_encoder_embeddings", None) | |
perceiver_embeddings = kwargs.get("perceiver_embeddings", None) | |
image_attention_mask = kwargs.get("image_attention_mask", None) | |
interpolate_pos_encoding = kwargs.get("interpolate_pos_encoding", False) | |
return { | |
"input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"position_ids": position_ids, | |
"attention_mask": attention_mask, | |
"token_type_ids": token_type_ids, | |
"pixel_values": pixel_values, | |
"image_encoder_embeddings": image_encoder_embeddings, | |
"perceiver_embeddings": perceiver_embeddings, | |
"image_attention_mask": image_attention_mask, | |
"interpolate_pos_encoding": interpolate_pos_encoding, | |
} | |
def freeze_model(model, module_exceptions=[]): | |
mapping = { | |
"LayerNorm": nn.LayerNorm, | |
"Linear": nn.Linear, | |
"Embedding": nn.Embedding, | |
} | |
module_exceptions_mapped = [mapping[m] for m in module_exceptions] | |
for module in model.modules(): | |
if module_exceptions and any(isinstance(module, t) for t in module_exceptions_mapped): | |
module.requires_grad_(True) # Explicitely setting it to true to avoid any mistakes | |
else: | |
module.requires_grad_(False) | |
return model | |
class IdeficsDecoupledEmbedding(nn.Embedding): | |
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding | |
""" | |
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the | |
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, | |
then it will create `num_additional_embeddings` additional parameters that are always trained. If | |
`num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`. | |
""" | |
def __init__( | |
self, | |
num_embeddings, | |
num_additional_embeddings, | |
embedding_dim, | |
partially_freeze: Optional[bool] = False, | |
device=None, | |
dtype=None, | |
padding_idx=None, | |
**kwargs, | |
) -> None: | |
""" | |
Args: | |
num_embeddings (`int`): | |
Size of the dictionary of embeddings | |
num_additional_embeddings (`int`): | |
Number of additional embeddings. Only useful when you `partially_freeze=True`. | |
embedding_dim (`int`): | |
The size of each embedding vector | |
partially_freeze: (`bool`, *optional*, defaults to `False`): | |
If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen. | |
padding_idx (`int`, *optional*): | |
The padding index (needs to be less than num_embeddings) | |
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, | |
`max_norm` or `norm_type`. We are not supporting these. | |
""" | |
if padding_idx is not None and padding_idx > num_embeddings: | |
raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}") | |
super().__init__( | |
num_embeddings=num_embeddings, | |
embedding_dim=embedding_dim, | |
device=device, | |
dtype=dtype, | |
padding_idx=padding_idx, | |
**kwargs, | |
) | |
self.num_embeddings = num_embeddings | |
self.padding_idx = padding_idx | |
self.num_additional_embeddings = num_additional_embeddings | |
self.partially_freeze = partially_freeze | |
if partially_freeze: | |
self.weight.requires_grad_(False) | |
if self.num_additional_embeddings > 0: | |
self.additional_embedding = nn.Embedding( | |
num_embeddings=self.num_additional_embeddings, | |
embedding_dim=embedding_dim, | |
device=device, | |
dtype=dtype, | |
) | |
def forward(self, input_ids): | |
""" | |
we have 2 embeddings, with different indices - one pretrained self.weight and another | |
self.additional_embedding.weight that is being trained. | |
in order to make a lookup of the input ids, we: | |
1. find out the indices of the entries belonging to the 2nd embedding | |
2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd | |
embedding starts from 0 and not num_embeddings | |
3. perform the 2nd embedding lookup | |
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index | |
5. perform the 1st embedding lookup | |
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup | |
note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but | |
then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices - | |
i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are | |
usually relatively short it's probably not faster or if faster not by much - but might be a good idea to | |
measure. | |
""" | |
if self.num_additional_embeddings == 0: | |
return F.embedding(input_ids, self.weight) | |
# Clone so that we don't modify the original input_ids later on | |
input_ids = input_ids.clone() | |
additional_vocab_indices = torch.where(input_ids >= self.num_embeddings) | |
input_ids_additional_vocab = input_ids[additional_vocab_indices] | |
additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings) | |
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway | |
input_ids[additional_vocab_indices] = 0 | |
full_vector = F.embedding(input_ids, self.weight) | |
# overwrite the records with high indices | |
full_vector[additional_vocab_indices] = additional_embeddings | |
return full_vector | |
def extra_repr(self) -> str: | |
return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format( | |
self.num_embeddings, | |
self.num_additional_embeddings, | |
self.embedding_dim, | |
self.partially_freeze, | |
) | |
class IdeficsDecoupledLinear(nn.Linear): | |
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear | |
""" | |
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the | |
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, | |
then it will create `out_additional_features * in_features` additional parameters that are always trained. If | |
`out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`. | |
""" | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
out_additional_features: int = 0, | |
bias: bool = True, | |
partially_freeze: bool = True, | |
device=None, | |
dtype=None, | |
) -> None: | |
""" | |
out_additional_features: int. Number of additional trainable dimensions. Only makes sense when | |
`partially_freeze=True`. partially_freeze: bool. If True, the regular `weight` will be frozen and extra | |
parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear. | |
""" | |
super().__init__(in_features, out_features, bias, device, dtype) | |
self.out_additional_features = out_additional_features | |
self.partially_freeze = partially_freeze | |
self.in_features = in_features | |
self.out_features = out_features | |
if partially_freeze: | |
self.weight.requires_grad_(False) | |
if bias: | |
self.bias.requires_grad_(False) | |
if out_additional_features > 0: | |
self.additional_fc = nn.Linear( | |
in_features=in_features, | |
out_features=out_additional_features, | |
bias=bias, | |
device=device, | |
dtype=dtype, | |
) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
output = F.linear(input, self.weight, self.bias) | |
if self.out_additional_features > 0: | |
additional_features = self.additional_fc(input) | |
output = torch.cat((output, additional_features), -1) | |
return output | |
def extra_repr(self) -> str: | |
"""Overwriting `nn.Linear.extra_repr` to include new parameters.""" | |
return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format( | |
self.in_features, | |
self.out_features, | |
self.out_additional_features, | |
self.bias is not None, | |
self.partially_freeze, | |
) | |
# this was adapted from LlamaRMSNorm | |
class IdeficsRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
IdeficsRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
ALL_LAYERNORM_LAYERS.append(IdeficsRMSNorm) | |
# this was adapted from LlamaRotaryEmbedding | |
class IdeficsEmbedding(torch.nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# this was adapted from LlamaMLP | |
class IdeficsMLP(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
intermediate_size: int, | |
hidden_act: str, | |
): | |
super().__init__() | |
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) | |
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.act_fn = ACT2FN[hidden_act] | |
def forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
# this was adapted from LlamaAttention | |
class IdeficsAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_cross_attention: bool = False, | |
config: PretrainedConfig = None, | |
qk_layer_norms: bool = False, | |
): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.head_dim = hidden_size // num_heads | |
self.dropout = dropout | |
self.is_causal = True | |
if (self.head_dim * num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.is_cross_attention = is_cross_attention | |
if not hasattr(nn.functional, "scaled_dot_product_attention"): | |
raise ValueError("this model requires pytorch 2.0 or higher") | |
if self.is_cross_attention: | |
kv_input_dim = ( | |
self.hidden_size if not hasattr(config.vision_config, "embed_dim") else config.vision_config.embed_dim | |
) | |
self.q_proj = nn.Linear( | |
self.hidden_size, | |
num_heads * self.head_dim, | |
bias=False, | |
) | |
self.k_proj = nn.Linear(kv_input_dim, num_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear( | |
kv_input_dim, | |
num_heads * self.head_dim, | |
bias=False, | |
) | |
else: | |
self.q_proj = nn.Linear( | |
self.hidden_size, | |
num_heads * self.head_dim, | |
bias=False, | |
) | |
self.k_proj = nn.Linear( | |
self.hidden_size, | |
num_heads * self.head_dim, | |
bias=False, | |
) | |
self.v_proj = nn.Linear( | |
self.hidden_size, | |
num_heads * self.head_dim, | |
bias=False, | |
) | |
self.o_proj = nn.Linear( | |
num_heads * self.head_dim, | |
hidden_size, | |
bias=False, | |
) | |
self.rotary_emb = IdeficsEmbedding(self.head_dim) | |
self.qk_layer_norms = qk_layer_norms | |
if self.qk_layer_norms: | |
self.q_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) | |
self.k_layer_norm = IdeficsRMSNorm(self.head_dim, eps=config.rms_norm_eps) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
is_cross_attention = self.is_cross_attention or key_value_states is not None | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
if not is_cross_attention: | |
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
else: | |
_, kv_len, _ = key_value_states.size() # Note that, in this case, `kv_len` == `kv_seq_len` | |
key_states = self.k_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = ( | |
self.v_proj(key_value_states).view(bsz, kv_len, self.num_heads, self.head_dim).transpose(1, 2) | |
) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
if not is_cross_attention: | |
cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, q_len)) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
# [bsz, nh, t, hd] | |
if past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
if self.qk_layer_norms: | |
query_states = self.q_layer_norm(query_states) | |
key_states = self.k_layer_norm(key_states) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal = True if self.is_causal and attention_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
attn_weights = None | |
if output_attentions: | |
logger.warning_once( | |
"attn_weights are not extracted in scaled_dot_product_attention. The model returns None instead" | |
) | |
return attn_output, attn_weights, past_key_value | |
# this was adapted from LlamaDecoderLayer | |
class IdeficsDecoderLayer(nn.Module): | |
def __init__(self, config: IdeficsConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = IdeficsAttention( | |
hidden_size=self.hidden_size, | |
num_heads=config.num_attention_heads, | |
dropout=config.dropout, | |
config=config, | |
) | |
self.mlp = IdeficsMLP( | |
hidden_size=self.hidden_size, | |
intermediate_size=config.intermediate_size, | |
hidden_act=config.hidden_act, | |
) | |
self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.dropout = config.dropout | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class IdeficsGatedCrossAttentionLayer(nn.Module): | |
def __init__(self, config: IdeficsConfig): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.cross_attn = IdeficsAttention( | |
hidden_size=self.hidden_size, | |
num_heads=config.num_attention_heads, | |
is_cross_attention=True, | |
dropout=config.dropout, | |
config=config, | |
qk_layer_norms=config.qk_layer_norms, | |
) | |
self.mlp = IdeficsMLP( | |
hidden_size=self.hidden_size, | |
intermediate_size=config.intermediate_size, | |
hidden_act=config.hidden_act, | |
) | |
self.input_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.config = config.dropout | |
self.act_cross_attn = nn.Tanh() | |
self.act_dense = nn.Tanh() | |
if config.alpha_initializer == "zeros": | |
if config.alpha_type == "vector": | |
self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) | |
self.alpha_dense = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) | |
elif config.alpha_type == "float": | |
self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) | |
self.alpha_dense = nn.Parameter(torch.zeros(1)) | |
else: | |
raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
elif config.alpha_initializer == "ones": | |
if config.alpha_type == "vector": | |
self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, self.hidden_size)) | |
self.alpha_dense = nn.Parameter(torch.ones(1, 1, self.hidden_size)) | |
elif config.alpha_type == "float": | |
self.alpha_cross_attn = nn.Parameter(torch.ones(1)) | |
self.alpha_dense = nn.Parameter(torch.ones(1)) | |
else: | |
raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
if config.alpha_type == "vector": | |
self.alpha_cross_attn = nn.Parameter( | |
torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) | |
) | |
self.alpha_dense = nn.Parameter( | |
torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) | |
) | |
elif config.alpha_type == "float": | |
self.alpha_cross_attn = nn.Parameter( | |
torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
) | |
self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))) | |
else: | |
raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
else: | |
raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!") | |
if not (hasattr(self, "alpha_cross_attn") and hasattr(self, "alpha_dense")): | |
raise ValueError("Alpha parameters not initialized correctly!") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_hidden_states: Optional[torch.Tensor] = None, | |
image_attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_gate: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
image_attention_mask (`torch.FloatTensor`, *optional*): image attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
cross_attention_gate (`torch.FloatTensor`, *optional*): | |
gate of size `(batch, seq_len)` used to zero-out cross-attention output for tokens attending no images. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
if image_hidden_states is None: | |
raise ValueError( | |
"`image_hidden_states` is required for Idefics cross attention module which are visual features to be" | |
" conditioned on." | |
) | |
if cross_attention_gate is None: | |
raise ValueError( | |
"`cross_attention_gate` is required for Idefics cross attention module to zero-out the cross-attention hidden_states attending to no images." | |
) | |
if past_key_value is not None: | |
raise NotImplementedError("Past key value states are not implemented for Idefics cross attention module.") | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.cross_attn( | |
hidden_states=hidden_states, | |
key_value_states=image_hidden_states, | |
attention_mask=image_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) | |
# Fill in zeros for cross_attention hidden_states of tokens attending to no images | |
hidden_states[cross_attention_gate == 0] = hidden_states[cross_attention_gate == 0].fill_(0) | |
hidden_states = residual + self.act_cross_attn(self.alpha_cross_attn) * hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.config, training=self.training) | |
hidden_states = residual + self.act_dense(self.alpha_dense) * hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
LLAMA_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`IdeficsConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class IdeficsPreTrainedModel(PreTrainedModel): | |
config_class = IdeficsConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["IdeficsDecoderLayer", "IdeficsGatedCrossAttentionLayer"] | |
_supports_sdpa = True | |
def _init_weights(self, module): | |
# important: this ported version of Idefics isn't meant for training from scratch - only | |
# inference and fine-tuning - so the proper init weights code has been removed - the m4 code | |
# base should be used for training from scratch and it contains the correct code. | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
# Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa | |
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig: | |
# We remove the checks on `is_torch_sdpa_available()` and `cls._supports_sdpa` as Falcon supports SDPA from torch==2.0.0 (no requirement on 2.1). | |
_is_bettertransformer = getattr(cls, "use_bettertransformer", False) | |
if _is_bettertransformer: | |
return config | |
if not hard_check_only: | |
config._attn_implementation = "sdpa" | |
return config | |
LLAMA_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class IdeficsModel(IdeficsPreTrainedModel): | |
""" | |
Transformer decoder consisting of `config.num_hidden_layers` layers. Each layer is a [`IdeficsDecoderLayer`] | |
Args: | |
config: IdeficsConfig | |
""" | |
def __init__(self, config: IdeficsConfig): | |
super().__init__(config) | |
self.config = config | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = IdeficsDecoupledEmbedding( | |
num_embeddings=config.vocab_size, | |
num_additional_embeddings=config.additional_vocab_size, | |
embedding_dim=config.hidden_size, | |
partially_freeze=config.freeze_text_layers, | |
padding_idx=self.padding_idx, | |
) | |
self.image_size = config.vision_config.image_size | |
self.vision_config = config.vision_config | |
self.vision_model = IdeficsVisionTransformer(config.vision_config) | |
# Perceiver Resampler | |
if config.use_resampler: | |
perceiver_config = config.perceiver_config | |
self.perceiver_resampler = IdeficsPerceiverResampler( | |
config, | |
config.vision_config.embed_dim, | |
perceiver_config.resampler_depth, | |
perceiver_config.resampler_n_heads, | |
perceiver_config.resampler_head_dim, | |
perceiver_config.resampler_n_latents, | |
) | |
self.layers = nn.ModuleList([IdeficsDecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.cross_layer_interval = config.cross_layer_interval | |
num_cross_layers = config.num_hidden_layers // self.cross_layer_interval | |
self.gated_cross_attn_layers = nn.ModuleList( | |
[IdeficsGatedCrossAttentionLayer(config) for _ in range(num_cross_layers)] | |
) | |
self.gradient_checkpointing = False | |
self.norm = IdeficsRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
# Initialize weights and apply final processing | |
self.post_init() | |
self.freeze_relevant_params(config) | |
def freeze_relevant_params(self, config=None): | |
if config is None: | |
config = self.config | |
if config.freeze_text_layers: | |
self.freeze_text_layers(config.freeze_text_module_exceptions) | |
if config.freeze_vision_layers: | |
freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions) | |
def freeze_text_layers(self, module_exceptions=[]): | |
for module in [self.layers, self.norm]: | |
freeze_model(module, module_exceptions=module_exceptions) | |
def freeze_vision_layers(self, module_exceptions=[]): | |
freeze_model(self.vision_model, module_exceptions=module_exceptions) | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
image_encoder_embeddings: Optional[torch.FloatTensor] = None, | |
perceiver_embeddings: Optional[torch.FloatTensor] = None, | |
image_attention_mask: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: Optional[bool] = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, IdeficsBaseModelOutputWithPast]: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
seq_length_with_past = seq_length | |
past_key_values_length = 0 | |
if past_key_values is not None: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length_with_past + past_key_values_length | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
elif position_ids is None: | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0) | |
if (pixel_values, image_encoder_embeddings, perceiver_embeddings).count(None) != 2: | |
raise ValueError( | |
"Exactly 1 of pixel_values, image_encoder_embeddings or perceiver_embeddings has to be not-None." | |
) | |
elif pixel_values is not None: | |
pixel_values = pixel_values.to(dtype=self.dtype, device=device) # fp16 compatibility | |
batch_size, num_images = pixel_values.shape[:2] | |
pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) | |
# Get sequence from the vision encoder | |
image_hidden_states = self.vision_model( | |
pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding | |
).last_hidden_state | |
elif image_encoder_embeddings is not None: | |
batch_size, num_images, image_seq_len, image_hidden_size = image_encoder_embeddings.size() | |
image_hidden_states = image_encoder_embeddings.to(dtype=self.dtype, device=device) | |
image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) | |
if self.config.use_resampler: | |
if perceiver_embeddings is None: | |
perceiver_embeddings = self.perceiver_resampler(image_hidden_states) | |
image_seq_len, image_hidden_size = perceiver_embeddings.size(1), perceiver_embeddings.size(2) | |
else: | |
batch_size, num_images, image_seq_len, image_hidden_size = perceiver_embeddings.size() | |
image_hidden_states = perceiver_embeddings | |
elif perceiver_embeddings is None: | |
image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) | |
else: | |
raise ValueError("If `perceiver_embeddings` are passed, use_resampler should be True") | |
image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) | |
# # Hack to use the model in full language modeling mode | |
# image_attention_mask = torch.zeros(batch_size, seq_length, 1, dtype=torch.long, device=image_hidden_states.device) | |
# Make image_attention_mask compatible with hidden states | |
text_seq_len = image_attention_mask.size(1) | |
image_attention_mask = image_attention_mask.unsqueeze(-1) | |
image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) | |
image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) | |
if image_hidden_states is not None: | |
image_batch_size, image_sequence_length, _ = image_hidden_states.size() | |
image_hidden_shape = (image_batch_size, image_sequence_length) | |
if image_attention_mask is None: | |
image_attention_mask = torch.ones(image_hidden_shape, device=device) | |
image_attention_mask = self.invert_attention_mask(image_attention_mask) | |
else: | |
image_attention_mask = None | |
# cross_attention_gate: | |
# For any tokens attending to no images, the hidden_states comming out of the cross-attention should be zeroed-out. | |
# `image_attention_mask` has shape [bsz, 1, num_images, hidden_size] with elements equal to either 0.0 or a very negative number. | |
# If any of the elements are 0.0, then the token is attending to at least one image and the gate value is 1. Otherwise the gate value is 0. | |
# `cross_attention_gate` has shape [bsz, seq_len] with elements equal to either 0.0 or 1.0. | |
cross_attention_gate = ((((image_attention_mask == 0.0).any(dim=-1)).to(dtype=self.dtype)).squeeze(dim=1)).to( | |
device | |
) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# embed positions | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | |
) | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for idx, decoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
def vblock( | |
main_block, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
image_hidden_states, | |
image_attention_mask, | |
cross_attention_gate, | |
output_attentions, | |
use_cache, | |
layer_idx, | |
cross_layer_interval, | |
gated_cross_attn_layers, | |
): | |
# TODO(ls): Add cross attention values to respective lists | |
if layer_idx % cross_layer_interval == 0: | |
xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] | |
outputs = xblock( | |
hidden_states, | |
attention_mask=attention_mask, | |
image_hidden_states=image_hidden_states, | |
image_attention_mask=image_attention_mask, | |
cross_attention_gate=cross_attention_gate, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
past_key_value=None, # not implemented | |
) | |
hidden_states = outputs[0] | |
layer_outputs = main_block( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
return layer_outputs | |
if self.gradient_checkpointing and self.training: | |
past_key_value = None | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
layer_outputs = self._gradient_checkpointing_func( | |
vblock, | |
decoder_layer, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
image_hidden_states, | |
image_attention_mask, | |
cross_attention_gate, | |
output_attentions, | |
use_cache, | |
idx, | |
self.cross_layer_interval, | |
self.gated_cross_attn_layers, | |
) | |
else: | |
layer_outputs = vblock( | |
decoder_layer, | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
image_hidden_states=image_hidden_states, | |
image_attention_mask=image_attention_mask, | |
cross_attention_gate=cross_attention_gate, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
layer_idx=idx, | |
cross_layer_interval=self.cross_layer_interval, | |
gated_cross_attn_layers=self.gated_cross_attn_layers, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
image_hidden_states = image_hidden_states.view(batch_size, num_images, image_seq_len, image_hidden_size) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states] | |
if v is not None | |
) | |
return IdeficsBaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
image_hidden_states=image_hidden_states, | |
) | |
class IdeficsForVisionText2Text(IdeficsPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] | |
_tied_weights_keys = ["model.embed_tokens.weight", "lm_head.weight"] | |
def __init__(self, config, vision_model=None): | |
super().__init__(config) | |
self.model = IdeficsModel(config) | |
self.lm_head = IdeficsDecoupledLinear( | |
in_features=config.hidden_size, | |
out_features=config.vocab_size, | |
out_additional_features=config.additional_vocab_size, | |
bias=False, | |
partially_freeze=config.freeze_lm_head, | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def tie_weights(self): | |
""" | |
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of | |
IdeficsDecoupledLinear and IdeficsDecoupledEmbedding. | |
""" | |
output_embeddings = self.get_output_embeddings() | |
input_embeddings = self.get_input_embeddings() | |
if getattr(self.config, "tie_word_embeddings", True): | |
output_embeddings.weight = input_embeddings.weight | |
if input_embeddings.num_additional_embeddings > 0: | |
assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings | |
output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight | |
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
output_embeddings.out_features = input_embeddings.num_embeddings | |
if hasattr(output_embeddings, "out_additional_features") and hasattr( | |
input_embeddings, "num_additional_embeddings" | |
): | |
output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
image_encoder_embeddings: Optional[torch.FloatTensor] = None, | |
perceiver_embeddings: Optional[torch.FloatTensor] = None, | |
image_attention_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
interpolate_pos_encoding: Optional[bool] = False, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, IdeficsCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, IdeficsForVisionText2Text | |
>>> model = IdeficsForVisionText2Text.from_pretrained("HuggingFaceM4/idefics-9b") | |
>>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics-9b") | |
>>> dogs_image_url_1 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg" | |
>>> dogs_image_url_2 = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image2.jpeg" | |
>>> prompts = [ | |
... [ | |
... "User:", | |
... dogs_image_url_1, | |
... "Describe this image.\nAssistant: An image of two dogs.\n", | |
... "User:", | |
... dogs_image_url_2, | |
... "Describe this image.\nAssistant:", | |
... ] | |
... ] | |
>>> inputs = processor(prompts, return_tensors="pt") | |
>>> generate_ids = model.generate(**inputs, max_new_tokens=6) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True) | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
pixel_values=pixel_values, | |
image_encoder_embeddings=image_encoder_embeddings, | |
perceiver_embeddings=perceiver_embeddings, | |
image_attention_mask=image_attention_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
if attention_mask is not None: | |
shift_attention_mask = attention_mask[..., 1:].to(logits.device) | |
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() | |
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() | |
else: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return IdeficsCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_hidden_states=outputs.image_hidden_states, | |
) | |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
image_hidden_states = kwargs.pop("image_hidden_states", None) | |
if image_hidden_states is not None: | |
if self.config.use_resampler: | |
kwargs["perceiver_embeddings"] = image_hidden_states | |
else: | |
kwargs["image_encoder_embeddings"] = image_hidden_states | |
kwargs["pixel_values"] = None | |
inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs) | |
unwanted_kwargs = ["token_type_ids"] | |
for kwarg in unwanted_kwargs: | |
inputs.pop(kwarg, None) | |
return inputs | |
def _expand_inputs_for_generation( | |
*args, | |
**model_kwargs, | |
): | |
return expand_inputs_for_generation(*args, **model_kwargs) | |
def _update_model_kwargs_for_generation( | |
self, | |
outputs: ModelOutput, | |
model_kwargs: Dict[str, Any], | |
is_encoder_decoder: bool = False, | |
standardize_cache_format: bool = False, | |
) -> Dict[str, Any]: | |
model_kwargs = super()._update_model_kwargs_for_generation( | |
outputs, | |
model_kwargs, | |
is_encoder_decoder, | |
standardize_cache_format, | |
) | |
if "image_attention_mask" in model_kwargs: | |
image_attention_mask = model_kwargs["image_attention_mask"] | |
last_mask = image_attention_mask[:, -1, :].unsqueeze(1) | |
model_kwargs["image_attention_mask"] = last_mask | |
# Get the precomputed image_hidden_states | |
model_kwargs["image_hidden_states"] = outputs.image_hidden_states | |
return model_kwargs | |
def _reorder_cache(past, beam_idx): | |
reordered_past = () | |
for layer_past in past: | |
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
return reordered_past | |