Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/idefics
/processing_idefics.py
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for IDEFICS. | |
""" | |
from typing import Callable, List, Optional, Union | |
from urllib.parse import urlparse | |
from ...feature_extraction_utils import BatchFeature | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TextInput, TruncationStrategy | |
from ...utils import is_tf_available, is_torch_available | |
if is_torch_available(): | |
import torch | |
if is_tf_available(): | |
import tensorflow as tf | |
IMAGE_TOKEN = "<image>" | |
# copied from m4.training.packing | |
def incremental_to_binary_attention_mask(incremental_mask, return_tensors, num_classes=-1): | |
# Set elements >= num_classes to -1 | |
if num_classes != -1: | |
if return_tensors == "pt": | |
incremental_mask[incremental_mask >= num_classes] = -1 | |
elif return_tensors == "tf": | |
incremental_mask = tf.where(incremental_mask >= num_classes, -1, incremental_mask) | |
# Create mask for negative values | |
if return_tensors == "pt": | |
negatives = incremental_mask == -1 | |
incremental_mask[negatives] = 0 | |
attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes) | |
attn_mask[negatives, :] = 0 | |
elif return_tensors == "tf": | |
negatives = tf.equal(incremental_mask, -1) | |
incremental_mask = tf.where(negatives, 0, incremental_mask) | |
attn_mask = tf.one_hot(incremental_mask, depth=num_classes) | |
# Reshape 'negatives' to add an extra dimension, making it [batch_size, seq_length, 1] | |
negatives_expanded = tf.expand_dims(negatives, -1) | |
attn_mask = tf.where(negatives_expanded, tf.zeros_like(attn_mask), attn_mask) | |
return attn_mask | |
# copied from m4.training.packing | |
def image_attention_mask_for_packed_input_ids(input_ids, tokenizer, return_tensors): | |
if return_tensors == "pt": | |
return image_attention_mask_for_packed_input_ids_pt(input_ids, tokenizer) | |
elif return_tensors == "tf": | |
return image_attention_mask_for_packed_input_ids_tf(input_ids, tokenizer) | |
def image_attention_mask_for_packed_input_ids_pt(input_ids, tokenizer): | |
image_attention_mask = torch.full_like(input_ids, fill_value=-1) | |
next_image_attention_mask = torch.full_like(input_ids, fill_value=-1) | |
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) | |
eod_token_id = tokenizer.eos_token_id | |
for batch_idx in range(input_ids.size(0)): | |
count = -1 | |
seen_eod = False | |
for idx, token_id in enumerate(input_ids[batch_idx]): | |
if token_id == image_token_id: | |
count += 1 | |
image_attention_mask[batch_idx][idx] = count | |
seen_eod = False | |
else: | |
image_attention_mask[batch_idx][idx] = count | |
if seen_eod: | |
image_attention_mask[batch_idx][idx] = -1 | |
if token_id == eod_token_id: | |
seen_eod = True | |
for batch_idx in range(input_ids.size(0)): | |
count = -1 | |
seen_eod = False | |
for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1): | |
token_id = input_ids[batch_idx][idx] | |
if token_id == image_token_id: | |
count += 1 | |
next_image_attention_mask[batch_idx][idx] = count | |
seen_eod = False | |
else: | |
next_image_attention_mask[batch_idx][idx] = count | |
if token_id == eod_token_id: | |
seen_eod = True | |
if seen_eod: | |
next_image_attention_mask[batch_idx][idx] = -1 | |
non_negative_indices = next_image_attention_mask[batch_idx] != -1 | |
next_image_attention_mask[batch_idx][non_negative_indices] -= count | |
next_image_attention_mask[batch_idx][non_negative_indices] *= -1 | |
return image_attention_mask, next_image_attention_mask | |
def image_attention_mask_for_packed_input_ids_tf(input_ids, tokenizer): | |
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) | |
eod_token_id = tokenizer.eos_token_id | |
batch_size = tf.shape(input_ids)[0] | |
image_attention_mask = tf.fill(tf.shape(input_ids), -1) | |
next_image_attention_mask = tf.fill(tf.shape(input_ids), -1) | |
for batch_idx in range(batch_size): | |
count = -1 | |
seen_eod = False | |
seq_length = tf.shape(input_ids)[1] | |
for idx in range(seq_length - 1, -1, -1): | |
token_id = input_ids[batch_idx, idx].numpy() | |
if token_id == image_token_id: | |
count += 1 | |
indices = [[batch_idx, idx]] | |
updates = [count] | |
image_attention_mask = tf.tensor_scatter_nd_update(image_attention_mask, indices, updates) | |
next_image_attention_mask = tf.tensor_scatter_nd_update(next_image_attention_mask, indices, updates) | |
elif token_id == eod_token_id and not seen_eod: | |
seen_eod = True | |
count = 0 | |
indices = [[batch_idx, idx]] | |
updates = [count] | |
next_image_attention_mask = tf.tensor_scatter_nd_update(next_image_attention_mask, indices, updates) | |
if seen_eod and token_id != eod_token_id: | |
indices = [[batch_idx, idx]] | |
updates = [-1] | |
next_image_attention_mask = tf.tensor_scatter_nd_update(next_image_attention_mask, indices, updates) | |
return image_attention_mask, next_image_attention_mask | |
def is_url(string): | |
"""Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately | |
invalidated the url""" | |
if " " in string: | |
return False | |
result = urlparse(string) | |
return all([result.scheme, result.netloc]) | |
class IdeficsProcessor(ProcessorMixin): | |
r""" | |
Constructs a IDEFICS processor which wraps a LLama tokenizer and IDEFICS image processor into a single processor. | |
[`IdeficsProcessor`] offers all the functionalities of [`IdeficsImageProcessor`] and [`LlamaTokenizerFast`]. See | |
the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information. | |
Args: | |
image_processor (`IdeficsImageProcessor`): | |
An instance of [`IdeficsImageProcessor`]. The image processor is a required input. | |
tokenizer (`LlamaTokenizerFast`): | |
An instance of [`LlamaTokenizerFast`]. The tokenizer is a required input. | |
image_size (`int`, *optional*, defaults to 224): Image size (assuming a square image) | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
valid_kwargs = ["image_size", "add_end_of_utterance_token"] | |
image_processor_class = "IdeficsImageProcessor" | |
tokenizer_class = "LlamaTokenizerFast" | |
def __init__(self, image_processor, tokenizer=None, image_size=224, add_end_of_utterance_token=None, **kwargs): | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
super().__init__(image_processor, tokenizer) | |
self.current_processor = self.image_processor | |
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) | |
self.default_image_dims = ( | |
self.image_processor.image_num_channels, | |
self.image_processor.image_size, | |
self.image_processor.image_size, | |
) | |
self.tokenizer_was_trained_with_end_of_utterance_token = ( | |
True | |
if "<end_of_utterance>" in self.tokenizer.special_tokens_map.get("additional_special_tokens", []) | |
else False | |
) | |
def __call__( | |
self, | |
prompts: Union[List[TextInput], List[List[TextInput]]], | |
padding: Union[bool, str, PaddingStrategy] = "longest", | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
transform: Callable = None, | |
add_eos_token=False, | |
add_end_of_utterance_token=None, | |
debug=False, | |
return_tensors="pt", | |
) -> BatchEncoding: | |
"""This method takes batched or non-batched prompts made of text and images and converts them into prompts that | |
the model was trained on and prepares the image pixel values for the model to process. | |
Args: | |
prompts (`Union[List[TextInput], [List[List[TextInput]]]]`): | |
either a single prompt or a batched list of prompts - see the detailed description immediately after | |
the end of the arguments doc section. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `"longest"`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'`: No padding. This will raise an error if the input sequences are of different | |
lengths. | |
Note: Unlike most processors, which set padding=`False` by default, `IdeficsProcessor` sets `padding="longest"` | |
by default. See https://github.com/huggingface/transformers/pull/29449#pullrequestreview-1925576061 for why. | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
transform (`Callable`, *optional*): | |
A custom transform function that accepts a single image can be passed for training. For example, | |
`torchvision.Compose` can be used to compose multiple functions. If `None` a preset inference-specific | |
set of transforms will be applied to the images | |
add_eos_token (`bool`, *optional*, defaults to `False`): | |
Adds `eos_token` at the end of the final prompt if True` | |
add_end_of_utterance_token (`bool`, *optional*) | |
Whether to automatically add `<end_of_utterance>` after each prompt's text input (unless followed by an | |
image). If `None` the tokenizer will be checked instead and if this token is found in | |
`additional_special_tokens` then the value will be `True`. | |
debug (`bool`, *optional*, defaults to `False`): | |
`True` value will help debug prompt generation by dumping useful information | |
return_tensors (`str` or `TensorType`, *optional*, defaults to `TensorType.PYTORCH`): | |
The type of tensors to return. Can be one of: | |
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | |
Returns: | |
a dict with entries: `input_ids`, `attention_mask`, `pixel_values`, `image_attention_mask` which can be | |
directly passed to `model.generate` | |
Detailed explanation: | |
Each entry in `prompts` is either a text to be passed as is or an image that will be processed. | |
An image can be either an image object (`PIL.Image`) or a url from which the image can be retrieved. | |
When the processor encounters an image it'll inject `<fake_token_around_image><image><fake_token_around_image>` | |
entry into the prompt. | |
Example: | |
```python | |
checkpoint = "HuggingFaceM4/idefics-9b" | |
processor = AutoProcessor.from_pretrained(checkpoint) | |
url = "https://hips.hearstapps.com/hmg-prod/images/cute-photos-of-cats-in-grass-1593184777.jpg" | |
img = processor.image_processor.fetch_images([url])[0] | |
prompts = [ | |
"User:", | |
img, | |
"Describe this image.\nAssistant: An image of two kittens in grass.\n", | |
"User:", | |
"https://hips.hearstapps.com/hmg-prod/images/dog-puns-1581708208.jpg", | |
"Describe this image.\nAssistant:", | |
] | |
inputs = processor(prompts, return_tensors="pt") | |
generated_ids = model.generate(**inputs, max_length=100) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
``` | |
In this example the `prompts` will be converted into: | |
``` | |
<s>User:<fake_token_around_image><image><fake_token_around_image>Describe this image. | |
Assistant: An image of two kittens in grass. | |
User:<fake_token_around_image><image><fake_token_around_image>Describe this image. | |
Assistant:' | |
``` | |
and the two images will be massaged using [`IdeficsImageProcessor.__call__`] method and placed inside the | |
`pixel_values` dict entry of the return value. | |
This example also examplifies that images can be passed as objects or as text urls. It can be seen that the | |
first image is passed as object and the second one as a url. | |
To do training do: | |
```python | |
image_transform = transforms.Compose( | |
[ | |
transforms.RandomResizedCrop( | |
(w, h), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC | |
), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=self.image_mean, std=self.image_std), | |
] | |
) | |
inputs = processor(prompts, transform=image_transform, return_tensors="pt") | |
``` | |
In order to help debug prompt generation enable `debug=True` which will show you what's happening. | |
""" | |
# if the value isn't overriden by the user, check if the tokenizer was trained with this token and then use it | |
if add_end_of_utterance_token is None: | |
add_end_of_utterance_token = self.tokenizer_was_trained_with_end_of_utterance_token | |
# turn non-batched prompts into batched | |
if not any(isinstance(i, list) for i in prompts): | |
prompts = [prompts] | |
fake_token = "<fake_token_around_image>" | |
image_token = "<image>" | |
end_of_utterance_token = "<end_of_utterance>" | |
def image_tokens(last_was_image): | |
if last_was_image: | |
return image_token + fake_token | |
else: | |
return fake_token + image_token + fake_token | |
all_prompts = [] | |
all_images = [] | |
for sample in prompts: | |
# the model was trained on samples starting with <s> | |
full_text = f"{self.tokenizer.bos_token}" | |
# an image can either be an image object in the item or the url, everything else is a verbatim prompt text | |
image_objects = [] | |
last_was_image = False | |
last_was_text = False | |
for i, item in enumerate(sample): | |
if i > 0: | |
last_was_text = True if not last_was_image else False | |
if isinstance(item, str): | |
item = item.strip(" ") | |
if is_url(item): | |
image = self.image_processor.fetch_images(item) | |
full_text += image_tokens(last_was_image) | |
image_objects.append(image) | |
last_was_image = True | |
else: | |
# we add end_of_utterance_token between each subsequent text prompts (but not at the last one!) | |
if add_end_of_utterance_token and last_was_text: | |
full_text += end_of_utterance_token | |
full_text += item | |
last_was_image = False | |
else: | |
# must be an image obj | |
full_text += image_tokens(last_was_image) | |
image_objects.append(item) | |
last_was_image = True | |
if add_eos_token: | |
full_text += self.tokenizer.eos_token | |
if debug is True: | |
print(f"{full_text=}") | |
image_objects = self.image_processor(image_objects, transform=transform, return_tensors=return_tensors) | |
all_prompts.append(full_text) | |
all_images.append(image_objects) | |
text_encoding = self.tokenizer( | |
text=all_prompts, | |
add_special_tokens=False, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
) | |
all_texts = text_encoding["input_ids"] | |
all_attention_masks = text_encoding["attention_mask"] | |
# max_num_images has to be at least 1 even when there are no images | |
max_num_images = max(len(x) for x in all_images) | |
max_num_images = max(1, max_num_images) | |
at_least_one_image = sum(len(x) for x in all_images) > 0 | |
output_input_ids = [] | |
output_images = [] | |
output_attention_masks = [] | |
for text, attention_mask, images in zip(all_texts, all_attention_masks, all_images): | |
padded_input_ids = text | |
image_count = padded_input_ids.count(self.image_token_id) | |
local_max_num_images = min(image_count, max_num_images) | |
current_images = images[:local_max_num_images] | |
if len(current_images) > 0: | |
if return_tensors == "pt": | |
padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:]) | |
padded_image_tensor[: current_images.size(0)] = current_images | |
elif return_tensors == "tf": | |
# Assuming current_images is a TensorFlow tensor | |
# Get the shape of current_images, excluding the first dimension | |
image_shape = tf.shape(current_images)[1:] | |
# Create a shape for the padded_image_tensor | |
padded_shape = tf.concat([[max_num_images], image_shape], axis=0) | |
# Create the padded_image_tensor of zeros | |
padded_image_tensor = tf.zeros(padded_shape, dtype=current_images.dtype) | |
# Get the number of images (assuming current_images has shape [num_images, height, width, channels]) | |
num_images = tf.shape(current_images)[0] | |
# Update the padded_image_tensor with the values from current_images | |
indices = tf.reshape(tf.range(num_images), (-1, 1)) | |
updates = current_images | |
padded_image_tensor = tf.tensor_scatter_nd_update(padded_image_tensor, indices, updates) | |
else: | |
if return_tensors == "pt": | |
padded_image_tensor = torch.zeros(max_num_images, *self.default_image_dims) | |
elif return_tensors == "tf": | |
padded_image_tensor = tf.zeros((max_num_images, *self.default_image_dims)) | |
output_images.append(padded_image_tensor) | |
if return_tensors == "pt": | |
output_input_ids.append(torch.tensor(padded_input_ids)) | |
output_attention_masks.append(torch.tensor(attention_mask)) | |
elif return_tensors == "tf": | |
output_input_ids.append(tf.convert_to_tensor(padded_input_ids, dtype=tf.int32)) | |
output_attention_masks.append(attention_mask) | |
if return_tensors == "pt": | |
output_input_ids = torch.stack(output_input_ids) | |
output_images = torch.stack(output_images) | |
output_attention_masks = torch.stack(output_attention_masks) | |
elif return_tensors == "tf": | |
output_input_ids = tf.stack(output_input_ids) | |
output_images = tf.stack(output_images) | |
output_attention_masks = tf.stack(output_attention_masks) | |
if at_least_one_image: | |
image_attention_mask, _ = image_attention_mask_for_packed_input_ids( | |
output_input_ids, self.tokenizer, return_tensors | |
) | |
image_attention_mask = incremental_to_binary_attention_mask( | |
image_attention_mask, return_tensors, num_classes=max_num_images | |
) | |
else: | |
# in full language mode we set the image mask to all-0s | |
if return_tensors == "pt": | |
image_attention_mask = torch.zeros( | |
output_input_ids.shape[0], output_input_ids.shape[1], 1, dtype=torch.bool | |
) | |
elif return_tensors == "tf": | |
image_attention_mask = tf.zeros( | |
(output_input_ids.shape[0], output_input_ids.shape[1], 1), dtype=tf.bool | |
) | |
return BatchFeature( | |
data={ | |
"input_ids": output_input_ids, | |
"attention_mask": output_attention_masks, | |
"pixel_values": output_images, | |
"image_attention_mask": image_attention_mask, | |
} | |
) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |