Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/imagegpt
/configuration_imagegpt.py
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""OpenAI ImageGPT configuration""" | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Any, Mapping, Optional | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
if TYPE_CHECKING: | |
from ... import FeatureExtractionMixin, TensorType | |
logger = logging.get_logger(__name__) | |
class ImageGPTConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is | |
used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT | |
[openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 512): | |
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`]. | |
n_positions (`int`, *optional*, defaults to 32*32): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_embd (`int`, *optional*, defaults to 512): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 8): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_inner (`int`, *optional*, defaults to None): | |
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd | |
activation_function (`str`, *optional*, defaults to `"quick_gelu"`): | |
Activation function (can be one of the activation functions defined in src/transformers/activations.py). | |
Defaults to "quick_gelu". | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`int`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
scale_attn_weights (`bool`, *optional*, defaults to `True`): | |
Scale attention weights by dividing by sqrt(hidden_size).. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): | |
Whether to additionally scale attention weights by `1 / layer_idx + 1`. | |
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): | |
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention | |
dot-product/softmax to float() when training with mixed precision. | |
Example: | |
```python | |
>>> from transformers import ImageGPTConfig, ImageGPTModel | |
>>> # Initializing a ImageGPT configuration | |
>>> configuration = ImageGPTConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = ImageGPTModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "imagegpt" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"hidden_size": "n_embd", | |
"max_position_embeddings": "n_positions", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=512 + 1, # add one for start of sentence (sos) token | |
n_positions=32 * 32, | |
n_embd=512, | |
n_layer=24, | |
n_head=8, | |
n_inner=None, | |
activation_function="quick_gelu", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
scale_attn_weights=True, | |
use_cache=True, | |
tie_word_embeddings=False, | |
scale_attn_by_inverse_layer_idx=False, | |
reorder_and_upcast_attn=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.n_inner = n_inner | |
self.activation_function = activation_function | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.scale_attn_weights = scale_attn_weights | |
self.use_cache = use_cache | |
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx | |
self.reorder_and_upcast_attn = reorder_and_upcast_attn | |
self.tie_word_embeddings = tie_word_embeddings | |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) | |
class ImageGPTOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("input_ids", {0: "batch", 1: "sequence"}), | |
] | |
) | |
def generate_dummy_inputs( | |
self, | |
preprocessor: "FeatureExtractionMixin", | |
batch_size: int = 1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional["TensorType"] = None, | |
num_channels: int = 3, | |
image_width: int = 32, | |
image_height: int = 32, | |
) -> Mapping[str, Any]: | |
""" | |
Generate inputs to provide to the ONNX exporter for the specific framework | |
Args: | |
preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]): | |
The preprocessor associated with this model configuration. | |
batch_size (`int`, *optional*, defaults to -1): | |
The batch size to export the model for (-1 means dynamic axis). | |
num_choices (`int`, *optional*, defaults to -1): | |
The number of candidate answers provided for multiple choice task (-1 means dynamic axis). | |
seq_length (`int`, *optional*, defaults to -1): | |
The sequence length to export the model for (-1 means dynamic axis). | |
is_pair (`bool`, *optional*, defaults to `False`): | |
Indicate if the input is a pair (sentence 1, sentence 2) | |
framework (`TensorType`, *optional*, defaults to `None`): | |
The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of channels of the generated images. | |
image_width (`int`, *optional*, defaults to 40): | |
The width of the generated images. | |
image_height (`int`, *optional*, defaults to 40): | |
The height of the generated images. | |
Returns: | |
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function | |
""" | |
input_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) | |
inputs = dict(preprocessor(images=input_image, return_tensors=framework)) | |
return inputs | |