Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/instructblipvideo
/modeling_instructblipvideo.py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 | |
# This file was automatically generated from <path_to_diff_file.py>. | |
# Do NOT edit this file manually as any edits will be overwritten by the generation of | |
# the file from the diff. If any change should be done, please apply the change to the | |
# diff.py file directly. | |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 | |
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPooling, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM | |
from .configuration_instructblipvideo import ( | |
InstructBlipVideoConfig, | |
InstructBlipVideoQFormerConfig, | |
InstructBlipVideoVisionConfig, | |
) | |
logger = logging.get_logger(__name__) | |
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGenerationModelOutput with Blip2->InstructBlipVideo | |
class InstructBlipVideoForConditionalGenerationModelOutput(ModelOutput): | |
""" | |
Class defining the outputs of [`InstructBlipVideoForConditionalGeneration`]. | |
Args: | |
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
Language modeling loss from the language model. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head of the language model. | |
vision_outputs (`BaseModelOutputWithPooling`): | |
Outputs of the vision encoder. | |
qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`): | |
Outputs of the Q-Former (Querying Transformer). | |
language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): | |
Outputs of the language model. | |
""" | |
loss: Optional[Tuple[torch.FloatTensor]] = None | |
logits: Optional[Tuple[torch.FloatTensor]] = None | |
vision_outputs: Optional[torch.FloatTensor] = None | |
qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None | |
language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] | |
if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"] | |
else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
# Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->InstructBlipVideo | |
class InstructBlipVideoVisionEmbeddings(nn.Module): | |
def __init__(self, config: InstructBlipVideoVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) | |
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: | |
""" | |
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher | |
resolution images. | |
Source: | |
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 | |
""" | |
num_patches = embeddings.shape[1] - 1 | |
num_positions = self.position_embedding.shape[1] - 1 | |
if num_patches == num_positions and height == width: | |
return self.position_embedding | |
class_pos_embed = self.position_embedding[:, 0, :] | |
patch_pos_embed = self.position_embedding[:, 1:, :] | |
dim = embeddings.shape[-1] | |
h0 = height // self.config.patch_size | |
w0 = width // self.config.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
h0, w0 = h0 + 0.1, w0 + 0.1 | |
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) | |
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed, | |
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), | |
mode="bicubic", | |
align_corners=False, | |
) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: | |
batch_size, _, height, width = pixel_values.shape | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
if interpolate_pos_encoding: | |
position_embedding = self.interpolate_pos_encoding(embeddings, height, width) | |
else: | |
position_embedding = self.position_embedding | |
embeddings = embeddings + position_embedding[:, : embeddings.size(1), :].to(target_dtype) | |
return embeddings | |
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2Attention with Blip2->InstructBlipVideo | |
class InstructBlipVideoAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = nn.Dropout(config.attention_dropout) | |
# small tweak here compared to CLIP, no bias here | |
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) | |
if config.qkv_bias: | |
q_bias = nn.Parameter(torch.zeros(self.embed_dim)) | |
v_bias = nn.Parameter(torch.zeros(self.embed_dim)) | |
else: | |
q_bias = None | |
v_bias = None | |
if q_bias is not None: | |
qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) | |
self.qkv.bias = nn.Parameter(qkv_bias) | |
self.projection = nn.Linear(self.embed_dim, self.embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
mixed_qkv = self.qkv(hidden_states) | |
mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( | |
2, 0, 3, 1, 4 | |
) | |
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
attention_scores = attention_scores * self.scale | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) | |
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) | |
context_layer = context_layer.reshape(new_context_layer_shape) | |
output = self.projection(context_layer) | |
outputs = (output, attention_probs) if output_attentions else (output, None) | |
return outputs | |
# Copied from transformers.models.blip.modeling_blip.BlipMLP | |
class InstructBlipVideoMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->InstructBlipVideo | |
class InstructBlipVideoEncoderLayer(nn.Module): | |
def __init__(self, config: InstructBlipVideoConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = InstructBlipVideoAttention(config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = InstructBlipVideoMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
head_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + residual | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = hidden_states + residual | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class InstructBlipVideoPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = InstructBlipVideoConfig | |
base_model_prefix = "blip" | |
supports_gradient_checkpointing = True | |
_no_split_modules = [ | |
"InstructBlipVideoQFormerEmbeddings", | |
"InstructBlipVideoAttention", | |
"InstructBlipVideoQFormerMultiHeadAttention", | |
"InstructBlipVideoQFormerSelfOutput", | |
] | |
_keep_in_fp32_modules = [] | |
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2PreTrainedModel._init_weights with Blip2->InstructBlipVideo | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_range | |
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=factor) | |
if hasattr(module, "bias") and module.bias is not None: | |
module.bias.data.zero_() | |
if isinstance(module, InstructBlipVideoVisionEmbeddings): | |
if hasattr(self.config, "vision_config") and not isinstance(self.config, InstructBlipVideoVisionConfig): | |
factor = self.config.vision_config.initializer_range | |
nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) | |
nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
INSTRUCTBLIPVIDEO_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`InstructBlipVideoProcessor`]. See | |
[`InstructBlipVideoProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained position encodings. | |
""" | |
# Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->InstructBlipVideo | |
class InstructBlipVideoEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`InstructBlipVideoEncoderLayer`]. | |
Args: | |
config (`InstructBlipVideoConfig`): | |
The corresponding vision configuration for the `InstructBlipVideoEncoder`. | |
""" | |
def __init__(self, config: InstructBlipVideoConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([InstructBlipVideoEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Embedded representation of the inputs. Should be float, not int tokens. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
INSTRUCTBLIPVIDEO_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`InstructBlipVideoConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
INSTRUCTBLIPVIDEO_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`InstructBlipVideoProcessor`]. See | |
[`InstructBlipVideoProcessor.__call__`] for details. | |
qformer_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of input sequence tokens in the vocabulary of the Q-Former. Input tokens can optionally be provided | |
to serve as text prompt, which the Q-Former model will encode. | |
Indices can be obtained using [`InstructBlipVideoProcessor`]. See [`InstructBlipVideoProcessor.__call__`] for | |
details. | |
[What are input IDs?](../glossary#input-ids) | |
qformer_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be | |
provided to serve as text prompt, which the language model can continue. | |
Indices can be obtained using [`InstructBlipVideoProcessor`]. See [`InstructBlipVideoProcessor.__call__`] for | |
details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an | |
encoder-decoder language model (like T5) is used. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
Only relevant in case an encoder-decoder language model (like T5) is used. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the pre-trained position encodings. | |
""" | |
# Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->InstructBlipVideo, BLIP->INSTRUCTBLIPVIDEO | |
class InstructBlipVideoVisionModel(InstructBlipVideoPreTrainedModel): | |
main_input_name = "pixel_values" | |
config_class = InstructBlipVideoVisionConfig | |
def __init__(self, config: InstructBlipVideoVisionConfig): | |
super().__init__(config) | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = InstructBlipVideoVisionEmbeddings(config) | |
self.encoder = InstructBlipVideoEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
pooled_output = last_hidden_state[:, 0, :] | |
pooled_output = self.post_layernorm(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
def get_input_embeddings(self): | |
return self.embeddings | |
class InstructBlipVideoQFormerMultiHeadAttention(nn.Module): | |
def __init__(self, config, is_cross_attention=False): | |
super().__init__() | |
self.config = config | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
"The hidden size (%d) is not a multiple of the number of attention heads (%d)" | |
% (config.hidden_size, config.num_attention_heads) | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
if is_cross_attention: | |
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
else: | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.save_attention = False | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def save_attention_map(self, attention_map): | |
self.attention_map = attention_map | |
def get_attention_map(self): | |
return self.attention_map | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
): | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
mixed_query_layer = self.query(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
attention_scores_dtype = attention_scores.dtype | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores).to(attention_scores_dtype) | |
if is_cross_attention and self.save_attention: | |
self.save_attention_map(attention_probs) | |
attention_probs.register_hook(self.save_attn_gradients) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs_dropped = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs_dropped = attention_probs_dropped * head_mask | |
context_layer = torch.matmul(attention_probs_dropped, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
outputs = outputs + (past_key_value,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->InstructBlipVideoQFormer | |
class InstructBlipVideoQFormerSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerAttention with Blip2->InstructBlipVideo | |
class InstructBlipVideoQFormerAttention(nn.Module): | |
def __init__(self, config, is_cross_attention=False): | |
super().__init__() | |
self.attention = InstructBlipVideoQFormerMultiHeadAttention(config, is_cross_attention) | |
self.output = InstructBlipVideoQFormerSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->InstructBlipVideoQFormer | |
class InstructBlipVideoQFormerIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->InstructBlipVideoQFormer | |
class InstructBlipVideoQFormerOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class InstructBlipVideoQFormerLayer(nn.Module): | |
def __init__(self, config, layer_idx): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = InstructBlipVideoQFormerAttention(config) | |
self.layer_idx = layer_idx | |
if layer_idx % config.cross_attention_frequency == 0: | |
self.crossattention = InstructBlipVideoQFormerAttention(config, is_cross_attention=True) | |
self.has_cross_attention = True | |
else: | |
self.has_cross_attention = False | |
self.intermediate = InstructBlipVideoQFormerIntermediate(config) | |
self.output = InstructBlipVideoQFormerOutput(config) | |
self.intermediate_query = InstructBlipVideoQFormerIntermediate(config) | |
self.output_query = InstructBlipVideoQFormerOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_value=None, | |
output_attentions=False, | |
query_length=0, | |
): | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
if query_length > 0: | |
query_attention_output = attention_output[:, :query_length, :] | |
if self.has_cross_attention: | |
if encoder_hidden_states is None: | |
raise ValueError("encoder_hidden_states must be given for cross-attention layers") | |
cross_attention_outputs = self.crossattention( | |
query_attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
output_attentions=output_attentions, | |
) | |
query_attention_output = cross_attention_outputs[0] | |
# add cross attentions if we output attention weights | |
outputs = outputs + cross_attention_outputs[1:-1] | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk_query, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
query_attention_output, | |
) | |
if attention_output.shape[1] > query_length: | |
layer_output_text = apply_chunking_to_forward( | |
self.feed_forward_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output[:, query_length:, :], | |
) | |
layer_output = torch.cat([layer_output, layer_output_text], dim=1) | |
else: | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output, | |
) | |
outputs = (layer_output,) + outputs | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
def feed_forward_chunk_query(self, attention_output): | |
intermediate_output = self.intermediate_query(attention_output) | |
layer_output = self.output_query(intermediate_output, attention_output) | |
return layer_output | |
# Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerEncoder with Blip2->InstructBlipVideo | |
class InstructBlipVideoQFormerEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList( | |
[InstructBlipVideoQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
query_length=0, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
for i in range(self.config.num_hidden_layers): | |
layer_module = self.layer[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
query_length, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if layer_module.has_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class InstructBlipVideoQFormerEmbeddings(nn.Module): | |
"""Construct the embeddings from word and position embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.config = config | |
def forward( | |
self, | |
input_ids=None, | |
position_ids=None, | |
query_embeds=None, | |
past_key_values_length=0, | |
): | |
if input_ids is not None: | |
seq_length = input_ids.size()[1] | |
else: | |
seq_length = 0 | |
if position_ids is None: | |
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() | |
if input_ids is not None: | |
embeddings = self.word_embeddings(input_ids) | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids.to(embeddings.device)) | |
embeddings = embeddings + position_embeddings | |
if query_embeds is not None: | |
embeddings = torch.cat((query_embeds, embeddings), dim=1) | |
else: | |
embeddings = query_embeds | |
embeddings = embeddings.to(self.layernorm.weight.dtype) | |
embeddings = self.layernorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class InstructBlipVideoQFormerModel(InstructBlipVideoPreTrainedModel): | |
""" | |
Querying Transformer (Q-Former), used in Instructblipvideo. Slightly modified from BLIP-2 as it also takes the | |
instruction as input. | |
""" | |
def __init__(self, config: InstructBlipVideoQFormerConfig): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = InstructBlipVideoQFormerEmbeddings(config) | |
self.encoder = InstructBlipVideoQFormerEncoder(config) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def get_extended_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_shape: Tuple[int], | |
device: torch.device, | |
has_query: bool = False, | |
) -> torch.Tensor: | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
attention_mask (`torch.Tensor`): | |
Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
input_shape (`Tuple[int]`): | |
The shape of the input to the model. | |
device: (`torch.device`): | |
The device of the input to the model. | |
Returns: | |
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | |
""" | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
# Provided a padding mask of dimensions [batch_size, seq_length] | |
# - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError( | |
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})", | |
) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
query_embeds: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | |
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | |
value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | |
used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | |
value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | |
`(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None and query_embeds is None: | |
raise ValueError("You have to specify query_embeds when input_ids is None") | |
# past_key_values_length | |
past_key_values_length = ( | |
past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 | |
) | |
query_length = query_embeds.shape[1] if query_embeds is not None else 0 | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
query_embeds=query_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
input_shape = embedding_output.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = embedding_output.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if encoder_hidden_states is not None: | |
if isinstance(encoder_hidden_states, list): | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | |
else: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if isinstance(encoder_attention_mask, list): | |
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | |
elif encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
query_length=query_length, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = sequence_output[:, 0, :] | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class InstructBlipVideoForConditionalGeneration(InstructBlipVideoPreTrainedModel): | |
config_class = InstructBlipVideoConfig | |
main_input_name = "pixel_values" | |
def __init__(self, config: InstructBlipVideoConfig): | |
super().__init__(config) | |
self.vision_model = InstructBlipVideoVisionModel(config.vision_config) | |
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) | |
self.qformer = InstructBlipVideoQFormerModel(config.qformer_config) | |
self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) | |
if config.use_decoder_only_language_model: | |
language_model = AutoModelForCausalLM.from_config( | |
config.text_config, attn_implementation=config._attn_implementation | |
) | |
else: | |
language_model = AutoModelForSeq2SeqLM.from_config( | |
config.text_config, attn_implementation=config._attn_implementation | |
) | |
if language_model._no_split_modules is not None: | |
self._no_split_modules.extend(language_model._no_split_modules) | |
if language_model._keep_in_fp32_modules is not None: | |
self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules) | |
self.language_model = language_model | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.language_model.set_input_embeddings(value) | |
def set_output_embeddings(self, new_embeddings): | |
self.language_model.set_output_embeddings(new_embeddings) | |
def get_output_embeddings(self) -> nn.Module: | |
return self.language_model.get_output_embeddings() | |
def get_encoder(self): | |
return self.language_model.get_encoder() | |
def get_decoder(self): | |
return self.language_model.get_decoder() | |
def _tie_weights(self): | |
if not self.config.use_decoder_only_language_model: | |
self.language_model.encoder.embed_tokens = self.language_model.shared | |
self.language_model.decoder.embed_tokens = self.language_model.shared | |
def _preprocess_accelerate(self): | |
r""" | |
Some pre-processing hacks to make the model `accelerate` compatible. Check | |
https://github.com/huggingface/transformers/pull/21707 for more details. | |
""" | |
hf_device_map = self.hf_device_map | |
if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: | |
# warn users about unexpected behavior when using multi-GPU + Instructblipvideo + `accelerate`. | |
logger.warning( | |
"The `language_model` is not in the `hf_device_map` dictionary and you are running your script" | |
" in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." | |
" Please pass a `device_map` that contains `language_model` to remove this warning." | |
" Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" | |
" more details on creating a `device_map` for large models.", | |
) | |
if hasattr(self.language_model, "_hf_hook"): | |
self.language_model._hf_hook.io_same_device = True # For `generate` compatibility | |
def forward( | |
self, | |
pixel_values: torch.FloatTensor, | |
qformer_input_ids: torch.FloatTensor, | |
qformer_attention_mask: Optional[torch.LongTensor] = None, | |
input_ids: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
labels: Optional[torch.LongTensor] = None, | |
return_dict: Optional[bool] = None, | |
interpolate_pos_encoding: bool = False, | |
) -> Union[Tuple, InstructBlipVideoForConditionalGenerationModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - | |
1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., | |
config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import InstructBlipVideoProcessor, InstructBlipVideoForConditionalGeneration | |
>>> import torch | |
>>> from huggingface_hub import hf_hub_download | |
>>> import av | |
>>> import numpy as np | |
>>> def read_video_pyav(container, indices): | |
... ''' | |
... Decode the video with PyAV decoder. | |
... Args: | |
... container (`av.container.input.InputContainer`): PyAV container. | |
... indices (`List[int]`): List of frame indices to decode. | |
... Returns: | |
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). | |
... ''' | |
... frames = [] | |
... container.seek(0) | |
... start_index = indices[0] | |
... end_index = indices[-1] | |
... for i, frame in enumerate(container.decode(video=0)): | |
... if i > end_index: | |
... break | |
... if i >= start_index and i in indices: | |
... frames.append(frame) | |
... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) | |
>>> model = InstructBlipVideoForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto") | |
>>> processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") | |
>>> file_path = hf_hub_download( | |
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" | |
... ) | |
>>> container = av.open(file_path) | |
>>> # sample uniformly 4 frames from the videWhy is this video funny?o | |
>>> total_frames = container.streams.video[0].frames | |
>>> indices = np.arange(0, total_frames, total_frames / 4).astype(int) | |
>>> clip = read_video_pyav(container, indices) | |
>>> prompt = "What is happening in the video?" | |
>>> inputs = processor(text=prompt, images=clip, return_tensors="pt").to(model.device) | |
>>> outputs = model.generate( | |
... **inputs, | |
... do_sample=False, | |
... num_beams=5, | |
... max_length=256, | |
... repetition_penalty=1.5, | |
... length_penalty=1.0, | |
... ) | |
>>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() | |
>>> print(generated_text) | |
"A person is eating a bowl of pasta, and they are using a fork to eat it. The person is sitting at a table, and the plate of pasta is on the table in front" | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# step 1: forward the images through the vision encoder, | |
# we process in a batched way, later unbatch it back (video has frames=4 always) | |
batch_size, frames, channel, height, width = pixel_values.shape | |
pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width) | |
vision_outputs = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
) | |
image_embeds = vision_outputs[0] | |
# step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention | |
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
# difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
if qformer_attention_mask is None: | |
qformer_attention_mask = torch.ones_like(qformer_input_ids) | |
qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0) | |
qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0) | |
qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) | |
query_outputs = self.qformer( | |
input_ids=qformer_input_ids, | |
attention_mask=qformer_attention_mask, | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
query_output = query_outputs[0][:, : query_tokens.size(1), :] | |
# step 3: use the language model, conditioned on the query outputs and the prompt | |
language_model_inputs = self.language_projection(query_output) | |
# unbatch inputs back, each video-frame gets `num_query_tokens` seq length | |
language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1) | |
language_model_attention_mask = torch.ones( | |
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device | |
) | |
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) | |
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1) | |
if self.config.use_decoder_only_language_model: | |
outputs = self.language_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = outputs.logits if return_dict else outputs[0] | |
loss = None | |
# we compute the loss here since we need to take into account the sequence length of the query embeds | |
if labels is not None: | |
labels = labels.to(logits.device) | |
logits = logits[:, -labels.size(1) :, :] | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous().to(logits.device) | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(reduction="mean") | |
loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) | |
else: | |
outputs = self.language_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
) | |
loss = outputs.loss if return_dict else outputs[0] | |
logits = outputs.logits if return_dict else outputs[1] | |
if not return_dict: | |
output = (logits, vision_outputs, query_outputs, outputs) | |
return ((loss,) + output) if loss is not None else output | |
return InstructBlipVideoForConditionalGenerationModelOutput( | |
loss=loss, | |
logits=logits, | |
vision_outputs=vision_outputs, | |
qformer_outputs=query_outputs, | |
language_model_outputs=outputs, | |
) | |
def generate( | |
self, | |
pixel_values: torch.FloatTensor, | |
qformer_input_ids: Optional[torch.LongTensor] = None, | |
qformer_attention_mask: Optional[torch.LongTensor] = None, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
interpolate_pos_encoding: bool = False, | |
**generate_kwargs, | |
) -> torch.LongTensor: | |
""" | |
Overrides `generate` function to be able to use the model as a conditional generator. | |
Args: | |
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width) or | |
(batch_size, num_frames, num_channels, height, width)): Input images or videos to be processed. | |
qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
The sequence used as a prompt to be fed to the Q-Former module. | |
qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
Mask to avoid performing attention on padding token indices. | |
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
The sequence used as a prompt for the generation. | |
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
Mask to avoid performing attention on padding token indices. | |
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): | |
Whether to interpolate the positional encoding of the image embeddings. | |
Returns: | |
captions (list): A list of strings of length batch_size * num_captions. | |
""" | |
if hasattr(self, "hf_device_map"): | |
# preprocess for `accelerate` | |
self._preprocess_accelerate() | |
# we process in a batched way, later unbatch it back (video has frames=4) | |
batch_size, frames, channel, height, width = pixel_values.shape | |
pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width) | |
image_embeds = self.vision_model( | |
pixel_values, | |
return_dict=True, | |
interpolate_pos_encoding=interpolate_pos_encoding, | |
).last_hidden_state | |
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
if qformer_attention_mask is None: | |
qformer_attention_mask = torch.ones_like(qformer_input_ids) | |
qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0) | |
qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0) | |
qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) | |
query_outputs = self.qformer( | |
input_ids=qformer_input_ids, | |
attention_mask=qformer_attention_mask, | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_attention_mask, | |
return_dict=True, | |
) | |
query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :] | |
language_model_inputs = self.language_projection(query_output) | |
# unbatch the embeddings back by moving frames to seq-len | |
language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1) | |
language_attention_mask = torch.ones( | |
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device | |
) | |
if input_ids is None: | |
input_ids = ( | |
torch.LongTensor([[self.config.text_config.bos_token_id]]) | |
.repeat(batch_size, 1) | |
.to(image_embeds.device) | |
) | |
if attention_mask is None: | |
attention_mask = torch.ones_like(input_ids) | |
attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) | |
# concatenate query embeddings with prompt embeddings | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) | |
# add image_embeds length to max_length, so that the final max_length in counted only on token embeds | |
# -1 is to account for the prepended BOS after `generate.` | |
if not self.language_model.config.is_encoder_decoder: | |
generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1 | |
generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1] | |
outputs = self.language_model.generate( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
**generate_kwargs, | |
) | |
# this is a temporary workaround to be consistent with other generation models and | |
# have BOS as the first token, even though under the hood we are calling LM with embeds | |
if not self.language_model.config.is_encoder_decoder: | |
# the InstructBLIP authors used inconsistent tokenizer/model files during training, | |
# with the tokenizer's bos token being set to </s> which has ID=2, | |
# whereas the model's text config has bos token id = 0 | |
bos_token_id = ( | |
2 | |
if self.config.text_config.architectures[0] == "LLaMAForCausalLM" | |
else self.config.text_config.bos_token_id | |
) | |
bos_tokens = torch.LongTensor([[bos_token_id]]).repeat(batch_size, 1).to(image_embeds.device) | |
if not isinstance(outputs, torch.Tensor): | |
outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1) | |
else: | |
outputs = torch.cat([bos_tokens, outputs], dim=-1) | |
return outputs | |