Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/jamba
/configuration_jamba.py
# coding=utf-8 | |
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Jamba model configuration""" | |
import math | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class JambaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`JambaModel`]. It is used to instantiate a | |
Jamba model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Jamba-v0.1 model. | |
[ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 65536): | |
Vocabulary size of the Jamba model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`JambaModel`] | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the | |
model has a output word embedding layer. | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 14336): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 8): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): | |
Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an | |
integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the | |
logits of the last prompt token are needed for generation. For long sequences, the logits for the entire | |
sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint | |
significantly. | |
output_router_logits (`bool`, *optional*, defaults to `False`): | |
Whether or not the router logits should be returned by the model. Enabling this will also | |
allow the model to output the auxiliary loss. See [here]() for more details | |
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | |
The aux loss factor for the total loss. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The id of the padding token. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the "end-of-sequence" token. | |
sliding_window (`int`, *optional*): | |
Sliding window attention window size. If not specified, will default to `None`. | |
max_position_embeddings (`int`, *optional*, defaults to 262144): | |
This value doesn't have any real effect. The maximum sequence length that this model is intended to be | |
used with. It can be used with longer sequences, but performance may degrade. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
num_experts_per_tok (`int`, *optional*, defaults to 2): | |
The number of experts to root per-token, can be also interpreted as the `top-p` routing | |
parameter | |
num_experts (`int`, *optional*, defaults to 16): | |
Number of experts per Sparse MLP layer. | |
expert_layer_period (`int`, *optional*, defaults to 2): | |
Once in this many layers, we will have an expert layer | |
expert_layer_offset (`int`, *optional*, defaults to 1): | |
The first layer index that contains an expert mlp layer | |
attn_layer_period (`int`, *optional*, defaults to 8): | |
Once in this many layers, we will have a vanilla attention layer | |
attn_layer_offset (`int`, *optional*, defaults to 4): | |
The first layer index that contains a vanilla attention mlp layer | |
use_mamba_kernels (`bool`, *optional*, defaults to `True`): | |
Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and | |
`causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if | |
`True` and kernels are not available | |
mamba_d_state (`int`, *optional*, defaults to 16): | |
The dimension the mamba state space latents | |
mamba_d_conv (`int`, *optional*, defaults to 4): | |
The size of the mamba convolution kernel | |
mamba_expand (`int`, *optional*, defaults to 2): | |
Expanding factor (relative to hidden_size) used to determine the mamba intermediate size | |
mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): | |
Rank of the the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` | |
mamba_conv_bias (`bool`, *optional*, defaults to `True`): | |
Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. | |
mamba_proj_bias (`bool`, *optional*, defaults to `False`): | |
Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block | |
""" | |
model_type = "jamba" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=65536, | |
tie_word_embeddings=False, | |
hidden_size=4096, | |
intermediate_size=14336, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=8, | |
hidden_act="silu", | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
num_logits_to_keep=1, | |
output_router_logits=False, | |
router_aux_loss_coef=0.001, | |
pad_token_id=0, | |
bos_token_id=1, | |
eos_token_id=2, | |
sliding_window=None, | |
max_position_embeddings=262144, | |
attention_dropout=0.0, | |
num_experts_per_tok=2, | |
num_experts=16, | |
expert_layer_period=2, | |
expert_layer_offset=1, | |
attn_layer_period=8, | |
attn_layer_offset=4, | |
use_mamba_kernels=True, | |
mamba_d_state=16, | |
mamba_d_conv=4, | |
mamba_expand=2, | |
mamba_dt_rank="auto", | |
mamba_conv_bias=True, | |
mamba_proj_bias=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.tie_word_embeddings = tie_word_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.sliding_window = sliding_window | |
self.max_position_embeddings = max_position_embeddings | |
self.attention_dropout = attention_dropout | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.num_logits_to_keep = num_logits_to_keep | |
self.output_router_logits = output_router_logits | |
self.router_aux_loss_coef = router_aux_loss_coef | |
self.num_experts_per_tok = num_experts_per_tok | |
self.num_experts = num_experts | |
self.expert_layer_period = expert_layer_period | |
self.expert_layer_offset = expert_layer_offset | |
self.attn_layer_period = attn_layer_period | |
self.attn_layer_offset = attn_layer_offset | |
self.use_mamba_kernels = use_mamba_kernels | |
self.mamba_d_state = mamba_d_state | |
self.mamba_d_conv = mamba_d_conv | |
self.mamba_expand = mamba_expand | |
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank | |
self.mamba_conv_bias = mamba_conv_bias | |
self.mamba_proj_bias = mamba_proj_bias | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
def layers_block_type(self): | |
return [ | |
"attention" if i % self.attn_layer_period == self.attn_layer_offset else "mamba" | |
for i in range(self.num_hidden_layers) | |
] | |
def layers_num_experts(self): | |
return [ | |
self.num_experts if i % self.expert_layer_period == self.expert_layer_offset else 1 | |
for i in range(self.num_hidden_layers) | |
] | |