Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/jetmoe
/modeling_jetmoe.py
# coding=utf-8 | |
# Copyright 2024 JetMoe AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch JetMoe model.""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from torch.nn import functional as F | |
from ...activations import ACT2FN | |
from ...cache_utils import Cache, DynamicCache, StaticCache | |
from ...modeling_attn_mask_utils import AttentionMaskConverter | |
from ...modeling_outputs import ( | |
MoeCausalLMOutputWithPast, | |
MoeModelOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_jetmoe import JetMoeConfig | |
if is_flash_attn_2_available(): | |
from ...modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "jetmoe" | |
_CONFIG_FOR_DOC = "JetMoeConfig" | |
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
min_dtype: float, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
min_dtype (`float`): | |
The minimum value representable with the dtype `dtype`. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
return causal_mask | |
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func | |
def load_balancing_loss_func( | |
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None | |
) -> float: | |
r""" | |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
experts is too unbalanced. | |
Args: | |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | |
shape [batch_size X sequence_length, num_experts]. | |
attention_mask (`torch.Tensor`, *optional*): | |
The attention_mask used in forward function | |
shape [batch_size X sequence_length] if not None. | |
num_experts (`int`, *optional*): | |
Number of experts | |
Returns: | |
The auxiliary loss. | |
""" | |
if gate_logits is None or not isinstance(gate_logits, tuple): | |
return 0 | |
if isinstance(gate_logits, tuple): | |
compute_device = gate_logits[0].device | |
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) | |
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) | |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
if attention_mask is None: | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.mean(routing_weights, dim=0) | |
else: | |
batch_size, sequence_length = attention_mask.shape | |
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask | |
expert_attention_mask = ( | |
attention_mask[None, :, :, None, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) | |
.reshape(-1, top_k, num_experts) | |
.to(compute_device) | |
) | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | |
expert_attention_mask, dim=0 | |
) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert | |
router_per_expert_attention_mask = ( | |
attention_mask[None, :, :, None] | |
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) | |
.reshape(-1, num_experts) | |
.to(compute_device) | |
) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( | |
router_per_expert_attention_mask, dim=0 | |
) | |
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) | |
return overall_loss * num_experts | |
class JetMoeParallelExperts(nn.Module): | |
def __init__(self, num_experts: int, input_size: int, output_size: int) -> None: | |
""" | |
Initialize the JetMoeParallelExperts module. | |
The experts weights are stored in [num_experts, output_size, input_size] format. Such that it's comptible with | |
many MoE libraries, such as [Megablock](https://github.com/databricks/megablocks) and | |
[ScatterMoE](https://github.com/shawntan/scattermoe), as well as the | |
[MoE kernel](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/fused_moe/fused_moe.py) | |
used in vllm. | |
Args: | |
num_experts (int): | |
Number of experts. | |
input_size (int): | |
Size of the input. | |
output_size (int): | |
Size of the output. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.empty(num_experts, output_size, input_size)) | |
self.num_experts = num_experts | |
self.input_size = input_size | |
self.output_size = output_size | |
def forward(self, inputs, expert_size): | |
""" | |
Forward pass of the JetMoeParallelExperts module. | |
Args: | |
inputs (Tensor): | |
Input tensor. | |
expert_size: | |
Expert size information. | |
Returns: | |
Tensor: Output tensor. | |
""" | |
input_list = inputs.split(expert_size, dim=0) | |
output_list = [] | |
for i in range(self.num_experts): | |
output_list.append(F.linear(input_list[i], self.weight[i])) | |
results = torch.cat(output_list, dim=0) | |
return results | |
class JetMoeTopKGating(nn.Module): | |
def __init__(self, input_size: int, num_experts: int, top_k: int): | |
""" | |
Initialize the top-k gating mechanism. | |
Args: | |
input_size (`int`): | |
Size of the input. | |
num_experts (`int`): | |
Number of experts. | |
top_k (`int`): | |
Number of top experts to select. | |
""" | |
super().__init__() | |
self.num_experts = num_experts | |
self.input_size = input_size | |
self.top_k = top_k | |
self.layer = nn.Linear(input_size, num_experts, bias=False) | |
def forward(self, hidden_states): | |
# compute the top_k routing decision | |
logits = self.layer(hidden_states).float() # [batch_size x seq_len, num_experts] | |
top_k_logits, top_k_indices = logits.topk(self.top_k, dim=1) # [num_tokens, top_k] | |
top_k_gates = torch.softmax(top_k_logits, dim=1).type_as(hidden_states) # [num_tokens, top_k] | |
# compute number of input given to each expert | |
zeros = torch.zeros( | |
[top_k_gates.size(0), self.num_experts], dtype=top_k_gates.dtype, device=top_k_gates.device | |
) # [num_tokens, num_experts] | |
gates = zeros.scatter(1, top_k_indices, 1) # [num_tokens, num_experts] | |
expert_size = gates.long().sum(0) # [num_experts,] | |
expert_size = expert_size.tolist() | |
# sort and group input tokens according to expert assignment | |
top_k_experts = top_k_indices.flatten() # [num_tokens * top_k] | |
_, index_sorted_experts = top_k_experts.sort(0) # [num_tokens * top_k] | |
batch_index = index_sorted_experts.div(self.top_k, rounding_mode="trunc") # [num_tokens * top_k] | |
# gather the gate values for grouped input tokens | |
top_k_gates = top_k_gates.flatten() # [num_tokens * top_k] | |
batch_gates = top_k_gates[index_sorted_experts] # [num_tokens * top_k] | |
return index_sorted_experts, batch_index, batch_gates, expert_size, logits | |
class JetMoeMoE(nn.Module): | |
""" | |
A Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts. | |
Args: | |
config: | |
Configuration object with model hyperparameters. | |
""" | |
def __init__(self, config: JetMoeConfig): | |
super(JetMoeMoE, self).__init__() | |
self.input_size = config.hidden_size | |
self.hidden_size = config.intermediate_size | |
self.activation = ACT2FN[config.activation_function] | |
self.bias = torch.nn.Parameter(torch.empty(self.input_size)) | |
self.input_linear = JetMoeParallelExperts(config.num_local_experts, self.input_size, self.hidden_size * 2) | |
self.output_linear = JetMoeParallelExperts(config.num_local_experts, self.hidden_size, self.input_size) | |
self.router = JetMoeTopKGating( | |
input_size=self.input_size, | |
num_experts=config.num_local_experts, | |
top_k=config.num_experts_per_tok, | |
) | |
def forward(self, layer_input): | |
""" | |
Forward pass of the mixture of experts layer. | |
Args: | |
layer_input (Tensor): | |
Input tensor. | |
Returns: | |
Tensor: | |
Output tensor. | |
Tensor: | |
Router logits. | |
""" | |
bsz, length, emb_size = layer_input.size() | |
layer_input = layer_input.reshape(-1, emb_size) | |
_, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input) | |
expert_inputs = layer_input[batch_index] | |
hidden_states = self.input_linear(expert_inputs, expert_size) | |
chunked_hidden_states = hidden_states.chunk(2, dim=-1) | |
hidden_states = self.activation(chunked_hidden_states[0]) * chunked_hidden_states[1] | |
expert_outputs = self.output_linear(hidden_states, expert_size) | |
expert_outputs = expert_outputs * batch_gates[:, None] | |
zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device) | |
layer_output = zeros.index_add(0, batch_index, expert_outputs) | |
layer_output = layer_output.view(bsz, length, self.input_size) | |
layer_output = layer_output + self.bias | |
return layer_output, router_logits | |
class JetMoeMoA(nn.Module): | |
""" | |
A Sparsely gated mixture of attention layer with pairs of query- and output-projections as experts. | |
Args: | |
config: | |
Configuration object with model hyperparameters. | |
""" | |
def __init__(self, config: JetMoeConfig): | |
super(JetMoeMoA, self).__init__() | |
self.num_experts = config.num_local_experts | |
self.input_size = config.hidden_size | |
self.hidden_size = config.kv_channels * config.num_key_value_heads | |
self.top_k = config.num_experts_per_tok | |
self.bias = torch.nn.Parameter(torch.empty(self.input_size)) | |
self.input_linear = JetMoeParallelExperts(self.num_experts, self.input_size, self.hidden_size) | |
self.output_linear = JetMoeParallelExperts(self.num_experts, self.hidden_size, self.input_size) | |
self.router = JetMoeTopKGating( | |
input_size=self.input_size, | |
num_experts=self.num_experts, | |
top_k=self.top_k, | |
) | |
def map(self, layer_input): | |
""" | |
Map inputs to attention experts according to routing decision and compute query projection inside each experts. | |
""" | |
# Compute gating topology | |
bsz, length, emb_size = layer_input.size() | |
layer_input = layer_input.reshape(-1, emb_size) # [bsz * length, emb_size] | |
index_sorted_experts, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input) | |
topo_info = (index_sorted_experts, batch_index, batch_gates, expert_size) | |
# Group inputs according to topology and compute query projection | |
expert_inputs = layer_input[batch_index] # [bsz * length * top_k, emb_size] | |
expert_outputs = self.input_linear(expert_inputs, expert_size) # [bsz * length * top_k, hidden_size] | |
# Ungroup queries back to original order | |
zeros = torch.zeros( | |
(bsz * length * self.top_k, self.hidden_size), dtype=expert_outputs.dtype, device=expert_outputs.device | |
) | |
layer_output = zeros.index_add(0, index_sorted_experts, expert_outputs) | |
layer_output = layer_output.view(bsz, length, self.top_k, -1) # [bsz, length, top_k, hidden_size] | |
return layer_output, router_logits, topo_info | |
def reduce(self, layer_input, topo_info): | |
""" | |
Compute output projection inside each attention experts and merge the outputs of different experts. | |
""" | |
bsz, length, k, hidden_size = layer_input.size() | |
layer_input = layer_input.reshape(-1, hidden_size) # [bsz * length * k, hidden_size] | |
index_sorted_experts, batch_index, batch_gates, expert_size = topo_info | |
# Group inputs according to topology and compute output projection | |
expert_inputs = layer_input[index_sorted_experts] # [bsz * length * top_k, hidden_size] | |
expert_outputs = self.output_linear(expert_inputs, expert_size) # [bsz * length * top_k, emb_size] | |
# Apply gates to attention expert outputs | |
expert_outputs = expert_outputs * batch_gates[:, None] | |
# Ungroup and merge outputs to original order | |
zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device) | |
layer_output = zeros.index_add(0, batch_index, expert_outputs) | |
layer_output = layer_output.view(bsz, length, self.input_size) | |
layer_output = layer_output + self.bias | |
return layer_output | |
def forward(self, layer_input): | |
raise NotImplementedError("This module doesn't support call and forward.") | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->JetMoe | |
class JetMoeRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
JetMoeRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->JetMoe | |
class JetMoeRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) | |
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) | |
def forward(self, x, position_ids, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
self.inv_freq.to(x.device) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class JetMoeAttention(nn.Module): | |
""" | |
Multi-headed attention from 'Attention Is All You Need' paper. | |
""" | |
def __init__(self, config: JetMoeConfig, layer_idx: Optional[int] = None): | |
""" | |
Initialize the JetMoeAttention module. | |
Args: | |
config: | |
Configuration object with model hyperparameters. | |
layer_idx: | |
Index of the layer in the model. | |
""" | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
self.is_causal = True | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.top_k = config.num_experts_per_tok | |
self.attention_dropout = config.attention_dropout | |
self.kv_projection_size = config.kv_channels * config.num_key_value_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_heads = config.num_attention_heads | |
self.head_dim = config.kv_channels | |
self.experts = JetMoeMoA(config) | |
self.kv_proj = torch.nn.Linear(config.hidden_size, self.kv_projection_size * 2, bias=False) | |
self.rotary_emb = JetMoeRotaryEmbedding( | |
config.kv_channels, | |
max_position_embeddings=config.max_position_embeddings, | |
base=config.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states, router_logits, topo_info = self.experts.map(hidden_states) | |
key_states, value_states = self.kv_proj(hidden_states).chunk(2, dim=-1) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads for top-k attention experts | |
key_states = key_states.repeat(1, self.top_k, 1, 1) | |
value_states = value_states.repeat(1, self.top_k, 1, 1) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.top_k, self.kv_projection_size) | |
attn_output = self.experts.reduce(attn_output, topo_info) | |
attn_output = attn_output.view(bsz, q_len, -1) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value, router_logits | |
class JetMoeSdpaAttention(JetMoeAttention): | |
""" | |
JetMoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`JetMoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from JetMoeAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]], Optional[torch.Tensor]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"JetMoeModel is using JetMoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states, router_logits, topo_info = self.experts.map(hidden_states) | |
key_states, value_states = self.kv_proj(hidden_states).chunk(2, dim=-1) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads for top-k attention experts | |
key_states = key_states.repeat(1, self.top_k, 1, 1) | |
value_states = value_states.repeat(1, self.top_k, 1, 1) | |
causal_mask = attention_mask | |
if attention_mask is not None: | |
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and causal_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.top_k, self.kv_projection_size) | |
attn_output = self.experts.reduce(attn_output, topo_info) | |
attn_output = attn_output.view(bsz, q_len, -1) | |
return attn_output, None, past_key_value, router_logits | |
class JetMoeFlashAttention2(JetMoeAttention): | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: Optional[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
use_cache: Optional[bool] = False, | |
output_attentions: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[ | |
Tuple[torch.Tensor, Tuple[torch.Tensor]], | |
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], | |
]: | |
""" | |
Forward pass of the JetMoeAttention module. | |
Args: | |
hidden_states (Optional[torch.FloatTensor]): Input hidden states. | |
attention_mask (Optional[torch.FloatTensor]): Attention mask. | |
layer_past (Optional[Tuple[torch.Tensor]]): Past layer state. | |
use_cache (Optional[bool]): Whether to use cached states. | |
output_attentions (Optional[bool]): Whether to output attention weights. | |
cache_position (Optional[torch.LongTensor]): Position of the cache. | |
Returns: | |
Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[...]]]: Tuple containing outputs. | |
""" | |
output_attentions = False | |
bsz, q_len, hidden_size = hidden_states.size() | |
# calculate query, key, values | |
query_states, router_logits, topo_info = self.experts.map(hidden_states) | |
key_states, value_states = self.kv_proj(hidden_states).chunk(2, dim=-1) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads for top-k attention experts | |
key_states = key_states.repeat(1, self.top_k, 1, 1) | |
value_states = value_states.repeat(1, self.top_k, 1, 1) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attention_dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.kv_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
is_causal=self.is_causal, | |
).to(input_dtype) | |
# output projection | |
attn_output = attn_output.reshape(bsz, q_len, self.top_k, self.kv_projection_size) | |
attn_output = self.experts.reduce(attn_output, topo_info) | |
attn_output = attn_output.view(bsz, q_len, hidden_size) # re-assemble all head outputs side by side | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value, router_logits | |
JETMOE_ATTENTION_CLASSES = { | |
"eager": JetMoeAttention, | |
"flash_attention_2": JetMoeFlashAttention2, | |
"sdpa": JetMoeSdpaAttention, | |
} | |
class JetMoeBlock(nn.Module): | |
def __init__(self, config: JetMoeConfig, layer_idx: Optional[int] = None): | |
""" | |
Initialize the JetMoeBlock module. | |
Args: | |
config: | |
Configuration object with model hyperparameters. | |
""" | |
super().__init__() | |
self.input_layernorm = JetMoeRMSNorm(config.hidden_size) | |
self.self_attention = JETMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
self.post_attention_layernorm = JetMoeRMSNorm(config.hidden_size) | |
self.mlp = JetMoeMoE(config) | |
def forward( | |
self, | |
hidden_states: Optional[torch.FloatTensor], | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_router_logits: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
# Self Attention | |
attn_output, self_attn_weights, present_key_value, attn_router_logits = self.self_attention( | |
hidden_states=self.input_layernorm(hidden_states), | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = hidden_states + attn_output | |
x_mlp, mlp_router_logits = self.mlp(self.post_attention_layernorm(hidden_states)) | |
hidden_states = hidden_states + x_mlp | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
if output_router_logits: | |
outputs += attn_router_logits, mlp_router_logits | |
return outputs | |
class JetMoePreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = JetMoeConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = False | |
_no_split_modules = ["JetMoeBlock"] | |
_skip_keys_device_placement = ["past_key_values"] | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, (nn.Linear,)): | |
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, JetMoeParallelExperts): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, JetMoeMoA): | |
module.bias.data.zero_() | |
elif isinstance(module, JetMoeMoE): | |
module.bias.data.zero_() | |
JETMOE_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`JetMoeConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
JETMOE_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | |
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | |
the complete sequence length. | |
""" | |
class JetMoeModel(JetMoePreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JetMoeBlock`] | |
Args: | |
config: | |
JetMoeConfig | |
""" | |
def __init__(self, config: JetMoeConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.layers = nn.ModuleList([JetMoeBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) | |
self._attn_implementation = config._attn_implementation | |
self.norm = JetMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel.set_input_embeddings | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else self.config.output_router_logits | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if self.gradient_checkpointing and self.training and use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
) | |
use_cache = False | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
return_legacy_cache = False | |
if ( | |
use_cache and not isinstance(past_key_values, Cache) and not self.training | |
): # kept for BC (non `Cache` `past_key_values` inputs) | |
return_legacy_cache = True | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: | |
batch_size = inputs_embeds.shape[0] | |
is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
if is_padding_right: | |
raise ValueError( | |
"You are attempting to perform batched generation with padding_side='right'" | |
" this may lead to unexpected behaviour for Flash Attention version of JetMoe. Make sure to " | |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
) | |
causal_mask = self._update_causal_mask( | |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_router_logits = () if output_router_logits else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
position_ids, | |
past_key_values, | |
causal_mask, | |
output_attentions, | |
output_router_logits, | |
use_cache, | |
use_reentrant=False, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
output_router_logits=output_router_logits, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if output_router_logits: | |
all_router_logits += (layer_outputs[-2], layer_outputs[-1]) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if return_legacy_cache: | |
next_cache = next_cache.to_legacy_cache() | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return MoeModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
router_logits=all_router_logits, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
class JetMoeForCausalLM(JetMoePreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = JetMoeModel(config) | |
self.vocab_size = config.vocab_size | |
self.aux_loss_coef = config.aux_loss_coef | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.tie_word_embeddings = config.tie_word_embeddings | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder | |
def set_decoder(self, decoder): | |
self.model = decoder | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, MoeCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Ensure tensors are on the same device | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits, shift_labels) | |
aux_loss = None | |
if output_router_logits: | |
aux_loss = load_balancing_loss_func( | |
outputs.router_logits if return_dict else outputs[-1], | |
self.num_experts, | |
self.num_experts_per_tok, | |
attention_mask, | |
) | |
if labels is not None: | |
loss += self.aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
if output_router_logits: | |
output = (aux_loss,) + output | |
return (loss,) + output if loss is not None else output | |
return MoeCausalLMOutputWithPast( | |
loss=loss, | |
aux_loss=aux_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
router_logits=outputs.router_logits, | |
) | |
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM.prepare_inputs_for_generation | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
cache_position=None, | |
output_router_logits=False, | |
position_ids=None, | |
use_cache=True, | |
**kwargs, | |
): | |
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens | |
# Exception 1: when passing input_embeds, input_ids may be missing entries | |
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here | |
if past_key_values is not None: | |
if inputs_embeds is not None: # Exception 1 | |
input_ids = input_ids[:, -cache_position.shape[0] :] | |
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) | |
input_ids = input_ids[:, cache_position] | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and cache_position[0] == 0: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"cache_position": cache_position, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
"output_router_logits": output_router_logits, | |
} | |
) | |
return model_inputs | |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->JetMoe, LLAMA->JETMOE | |
class JetMoeForSequenceClassification(JetMoePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = JetMoeModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |