Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/kosmos2
/configuration_kosmos2.py
# coding=utf-8 | |
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""KOSMOS-2 model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class Kosmos2TextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a | |
KOSMOS-2 text decoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2 | |
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 65037): | |
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Kosmos2Model`]. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
embed_dim (`int`, *optional*, defaults to 2048): | |
Dimensionality of the layers and the pooler layer. | |
layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
scale_embedding (`bool`, *optional*, defaults to `True`): | |
Scale embeddings by diving by sqrt(embed_dim). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
```""" | |
model_type = "kosmos_2_text_model" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"num_attention_heads": "attention_heads", | |
"hidden_size": "embed_dim", | |
"num_hidden_layers": "layers", | |
} | |
def __init__( | |
self, | |
vocab_size=65037, | |
max_position_embeddings=2048, | |
embed_dim=2048, | |
layers=24, | |
ffn_dim=8192, | |
attention_heads=32, | |
activation_function="gelu", | |
dropout=0.1, | |
attention_dropout=0.1, | |
activation_dropout=0.0, | |
layerdrop=0.0, | |
layer_norm_eps=1e-5, | |
init_std=0.02, | |
scale_embedding=True, | |
use_cache=True, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
**kwargs, | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.embed_dim = embed_dim | |
self.layers = layers | |
self.ffn_dim = ffn_dim | |
self.attention_heads = attention_heads | |
self.activation_function = activation_function | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.layerdrop = layerdrop | |
self.layer_norm_eps = layer_norm_eps | |
self.init_std = init_std | |
self.scale_embedding = scale_embedding | |
self.use_cache = use_cache | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from Kosmos2Config | |
if config_dict.get("model_type") == "kosmos-2": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Kosmos2VisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a | |
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2 | |
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 14): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
```""" | |
model_type = "kosmos_2_vision_model" | |
def __init__( | |
self, | |
hidden_size=1024, | |
intermediate_size=4096, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
num_channels=3, | |
image_size=224, | |
patch_size=14, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-5, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from Kosmos2Config | |
if config_dict.get("model_type") == "kosmos-2": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class Kosmos2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a | |
KOSMOS-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the KOSMOS-2 | |
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`]. | |
latent_query_num (`int`, *optional*, defaults to 64): | |
The number of latent query tokens that represent the image features used in the text decoder component. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import Kosmos2Config, Kosmos2Model | |
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration | |
>>> configuration = Kosmos2Config() | |
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration | |
>>> model = Kosmos2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "kosmos-2" | |
is_composition = True | |
def __init__( | |
self, | |
text_config=None, | |
vision_config=None, | |
latent_query_num=64, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.") | |
self.text_config = Kosmos2TextConfig(**text_config) | |
self.vision_config = Kosmos2VisionConfig(**vision_config) | |
self.latent_query_num = latent_query_num | |