Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/kosmos2
/modeling_kosmos2.py
# coding=utf-8 | |
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch KOSMOS-2 model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Any, List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPooling, | |
CausalLMOutputWithCrossAttentions, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = Kosmos2Config | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | |
): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids | |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
return incremental_indices.long() + padding_idx | |
KOSMOS2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Kosmos2Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
KOSMOS2_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`CLIPImageProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
KOSMOS2_TEXT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. | |
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0, | |
1]`: | |
- 1 for places where to put the image features, | |
- 0 for places that are not for image features (i.e. for text tokens). | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
KOSMOS2_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`CLIPImageProcessor.__call__`] for details. | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
image_embeds_position_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to indicate the location in a sequence to insert the image features . Mask values selected in `[0, | |
1]`: | |
- 1 for places where to put the image features, | |
- 0 for places that are not for image features (i.e. for text tokens). | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
image_embeds: (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Kosmos2ModelOutput(ModelOutput): | |
""" | |
Base class for text model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. | |
projection_attentions (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute | |
the weighted average in the self-attention heads. | |
vision_model_output(`BaseModelOutputWithPooling`, *optional*): | |
The output of the [`Kosmos2VisionModel`]. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if | |
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, | |
encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if | |
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` | |
input) to speed up sequential decoding. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_embeds: Optional[torch.FloatTensor] = None | |
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
vision_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput): | |
""" | |
Model output class for `Kosmos2ForConditionalGeneration`. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. | |
projection_attentions (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute | |
the weighted average in the self-attention heads. | |
vision_model_output(`BaseModelOutputWithPooling`, *optional*): | |
The output of the [`Kosmos2VisionModel`]. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if | |
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, | |
encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if | |
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` | |
input) to speed up sequential decoding. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_embeds: Optional[torch.FloatTensor] = None | |
projection_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
vision_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2 | |
class Kosmos2VisionEmbeddings(nn.Module): | |
def __init__(self, config: Kosmos2VisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
bias=False, | |
) | |
self.num_patches = (self.image_size // self.patch_size) ** 2 | |
self.num_positions = self.num_patches + 1 | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) | |
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
batch_size = pixel_values.shape[0] | |
target_dtype = self.patch_embedding.weight.dtype | |
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] | |
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
class_embeds = self.class_embedding.expand(batch_size, 1, -1) | |
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
embeddings = embeddings + self.position_embedding(self.position_ids) | |
return embeddings | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Kosmos2Vision | |
class Kosmos2VisionAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scale | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
# apply the causal_attention_mask first | |
if causal_attention_mask is not None: | |
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
f" {causal_attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if output_attentions: | |
# this operation is a bit akward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision | |
class Kosmos2VisionMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->Kosmos2Vision | |
class Kosmos2VisionEncoderLayer(nn.Module): | |
def __init__(self, config: Kosmos2VisionConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = Kosmos2VisionAttention(config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = Kosmos2VisionMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
causal_attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
`(config.encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Kosmos2Vision | |
class Kosmos2VisionEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`Kosmos2VisionEncoderLayer`]. | |
Args: | |
config: Kosmos2VisionConfig | |
""" | |
def __init__(self, config: Kosmos2VisionConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Causal mask for the text model. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
# Similar to `transformers.models.clip.modeling_clip.CLIPVisionTransformer` but without docstring for `forward` | |
class Kosmos2VisionTransformer(nn.Module): | |
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIPVision->Kosmos2Vision,ALTCLIP_VISION->KOSMOS2_VISION,AltCLIP->Kosmos2Vision | |
def __init__(self, config: Kosmos2VisionConfig): | |
super().__init__() | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = Kosmos2VisionEmbeddings(config) | |
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self.encoder = Kosmos2VisionEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
hidden_states = self.embeddings(pixel_values) | |
hidden_states = self.pre_layrnorm(hidden_states) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
pooled_output = last_hidden_state[:, 0, :] | |
pooled_output = self.post_layernorm(pooled_output) | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Similar to `transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding` but allowing to pass `position_ids` | |
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module): | |
"""This module produces sinusoidal positional embeddings of any length.""" | |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.__init__ | |
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
super().__init__() | |
self.offset = 2 | |
self.embedding_dim = embedding_dim | |
self.padding_idx = padding_idx | |
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) | |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.make_weights | |
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) | |
if hasattr(self, "weights"): | |
# in forward put the weights on the correct dtype and device of the param | |
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) | |
self.register_buffer("weights", emb_weights, persistent=False) | |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.get_embedding | |
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
""" | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of | |
"Attention Is All You Need". | |
""" | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) | |
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) | |
if embedding_dim % 2 == 1: | |
# zero pad | |
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
if padding_idx is not None: | |
emb[padding_idx, :] = 0 | |
return emb.to(torch.get_default_dtype()) | |
def forward( | |
self, | |
input_ids: torch.Tensor = None, | |
inputs_embeds: torch.Tensor = None, | |
past_key_values_length: int = 0, | |
position_ids: torch.Tensor = None, | |
): | |
if input_ids is not None: | |
bsz, seq_len = input_ids.size() | |
if position_ids is None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids( | |
input_ids, self.padding_idx, past_key_values_length | |
).to(input_ids.device) | |
else: | |
bsz, seq_len = inputs_embeds.size()[:-1] | |
if position_ids is None: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) | |
# expand embeddings if needed | |
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length | |
if max_pos > self.weights.size(0): | |
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) | |
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() | |
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length | |
class KosmosTextAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Similar to transformers.models.bart.modeling_bart.BartAttention.__init__ except an additional `inner_attn_ln`. | |
def __init__( | |
self, | |
config, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
add_inner_attn_layernorm: bool = False, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
# End opy | |
self.inner_attn_ln = None | |
if add_inner_attn_layernorm: | |
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
def _shape(self, projection: torch.Tensor) -> torch.Tensor: | |
new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim) | |
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) | |
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) | |
return new_projection | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = encoder_hidden_states is not None | |
batch_size, seq_length = hidden_states.shape[:2] | |
# use encoder_hidden_states if cross attention | |
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided | |
# `encoder_hidden_states` to support prefix tuning | |
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
else: | |
key_states = self._shape(self.k_proj(current_states)) | |
value_states = self._shape(self.v_proj(current_states)) | |
if past_key_value is not None and not is_cross_attention: | |
# reuse k, v, self_attention | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
query_states = self._shape(self.q_proj(hidden_states) * self.scaling) | |
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
src_len = key_states.size(2) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, seq_length, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, seq_length, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# attn_output = torch.bmm(attn_probs, value_states) ? | |
context_states = torch.matmul(attn_weights, value_states) | |
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ? | |
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) | |
if self.inner_attn_ln is not None: | |
context_states = self.inner_attn_ln(context_states) | |
attn_output = self.out_proj(context_states) | |
return attn_output, attn_weights, past_key_value | |
class Kosmos2TextFFN(nn.Module): | |
def __init__(self, config: Kosmos2TextConfig): | |
super().__init__() | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim) | |
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim) | |
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.ffn_layernorm(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
return hidden_states | |
class Kosmos2TextBlock(nn.Module): | |
def __init__(self, config: Kosmos2TextConfig): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
self.self_attn = KosmosTextAttention( | |
config, | |
embed_dim=self.embed_dim, | |
num_heads=config.attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
add_inner_attn_layernorm=True, | |
) | |
self.dropout = config.dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
if config.add_cross_attention: | |
self.encoder_attn = KosmosTextAttention( | |
config, | |
embed_dim=self.embed_dim, | |
num_heads=config.attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
add_inner_attn_layernorm=False, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.ffn = Kosmos2TextFFN(config) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
residual = hidden_states | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# add present self-attn cache to positions 1,2 of present_key_value tuple | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
if not hasattr(self, "encoder_attn"): | |
raise ValueError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" | |
" by setting `config.add_cross_attention=True`" | |
) | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
# FFN | |
hidden_states = self.ffn(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class Kosmos2TextTransformer(nn.Module): | |
""" | |
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`]. | |
Args: | |
config: Kosmos2TextConfig | |
""" | |
def __init__(self, config: Kosmos2TextConfig): | |
super().__init__() | |
self.config = config | |
self.dropout = config.dropout | |
self.layerdrop = config.layerdrop | |
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0 | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id) | |
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding( | |
num_positions=config.max_position_embeddings, | |
embedding_dim=config.embed_dim, | |
padding_idx=config.pad_token_id, | |
) | |
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)]) | |
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps) | |
self.gradient_checkpointing = False | |
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def forward_embedding( | |
self, | |
input_ids, | |
inputs_embeds: torch.Tensor = None, | |
image_embeds: torch.Tensor = None, | |
img_input_mask: torch.Tensor = None, | |
past_key_values_length: int = 0, | |
position_ids: torch.Tensor = None, | |
): | |
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`. | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if image_embeds is not None: | |
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = image_embeds.to(inputs_embeds.device).view( | |
-1, image_embeds.size(-1) | |
) | |
inputs_embeds = inputs_embeds * self.embed_scale | |
# embed positions | |
positions = self.embed_positions( | |
input_ids=input_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
position_ids=position_ids, | |
) | |
positions = positions.to(inputs_embeds.device) | |
hidden_states = inputs_embeds + positions | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
return hidden_states | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.shape | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
# We don't need img info. when `past_key_values_length` > 0 | |
if past_key_values_length > 0: | |
image_embeds = None | |
image_embeds_position_mask = None | |
hidden_states = self.forward_embedding( | |
input_ids=input_ids, | |
inputs_embeds=inputs_embeds, | |
image_embeds=image_embeds, | |
img_input_mask=image_embeds_position_mask, | |
past_key_values_length=past_key_values_length, | |
position_ids=position_ids, | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, input_shape, hidden_states, past_key_values_length | |
) | |
# expand encoder attention mask | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
present_key_value_states = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
if attn_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
present_key_value_states += (layer_outputs[3 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
# add final layer norm | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_self_attns, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class Kosmos2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Kosmos2Config | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Kosmos2VisionEncoderLayer", "Kosmos2TextBlock"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(self, Kosmos2VisionModel): | |
factor = self.config.initializer_factor | |
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)): | |
factor = self.config.vision_config.initializer_factor | |
if isinstance(self, (Kosmos2TextModel, Kosmos2TextForCausalLM)): | |
std = self.config.init_std | |
elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)): | |
std = self.config.text_config.init_std | |
if isinstance(module, Kosmos2VisionEmbeddings): | |
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) | |
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) | |
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) | |
elif isinstance(module, Kosmos2VisionAttention): | |
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
out_proj_std = (module.embed_dim**-0.5) * factor | |
nn.init.normal_(module.q_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.k_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.v_proj.weight, std=in_proj_std) | |
nn.init.normal_(module.out_proj.weight, std=out_proj_std) | |
if module.q_proj.bias is not None: | |
module.q_proj.bias.data.zero_() | |
if module.k_proj.bias is not None: | |
module.k_proj.bias.data.zero_() | |
if module.v_proj.bias is not None: | |
module.v_proj.bias.data.zero_() | |
if module.out_proj.bias is not None: | |
module.out_proj.bias.data.zero_() | |
elif isinstance(module, Kosmos2VisionMLP): | |
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor | |
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
nn.init.normal_(module.fc1.weight, std=fc_std) | |
nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
if module.fc1.bias is not None: | |
module.fc1.bias.data.zero_() | |
if module.fc2.bias is not None: | |
module.fc2.bias.data.zero_() | |
elif isinstance(module, Kosmos2VisionEncoderLayer): | |
module.layer_norm1.bias.data.zero_() | |
module.layer_norm1.weight.data.fill_(1.0) | |
module.layer_norm2.bias.data.zero_() | |
module.layer_norm2.weight.data.fill_(1.0) | |
elif isinstance(module, Kosmos2VisionTransformer): | |
module.pre_layrnorm.bias.data.zero_() | |
module.pre_layrnorm.weight.data.fill_(1.0) | |
module.post_layernorm.bias.data.zero_() | |
module.post_layernorm.weight.data.fill_(1.0) | |
elif isinstance(module, KosmosTextAttention): | |
nn.init.normal_(module.q_proj.weight, std=std) | |
nn.init.normal_(module.k_proj.weight, std=std) | |
nn.init.normal_(module.v_proj.weight, std=std) | |
nn.init.normal_(module.out_proj.weight, std=std) | |
if module.q_proj.bias is not None: | |
module.q_proj.bias.data.zero_() | |
if module.k_proj.bias is not None: | |
module.k_proj.bias.data.zero_() | |
if module.v_proj.bias is not None: | |
module.v_proj.bias.data.zero_() | |
if module.out_proj.bias is not None: | |
module.out_proj.bias.data.zero_() | |
elif isinstance(module, Kosmos2TextFFN): | |
nn.init.normal_(module.fc1.weight, std=std) | |
nn.init.normal_(module.fc2.weight, std=std) | |
if module.fc1.bias is not None: | |
module.fc1.bias.data.zero_() | |
if module.fc2.bias is not None: | |
module.fc2.bias.data.zero_() | |
elif isinstance(module, Kosmos2TextForCausalLM): | |
nn.init.normal_(module.lm_head.weight, std=std) | |
if module.lm_head.bias is not None: | |
module.lm_head.bias.data.zero_() | |
elif isinstance(module, Kosmos2ImageToTextProjection): | |
nn.init.normal_(module.dense.weight, std=std) | |
if module.dense.bias is not None: | |
module.dense.bias.data.zero_() | |
elif isinstance(module, Kosmos2TextTransformer): | |
module.embed_tokens.weight.data.normal_(mean=0.0, std=std) | |
if module.embed_tokens.padding_idx is not None: | |
module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_() | |
class Kosmos2VisionModel(Kosmos2PreTrainedModel): | |
config_class = Kosmos2VisionConfig | |
main_input_name = "pixel_values" | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model | |
def __init__(self, config: Kosmos2VisionConfig): | |
super().__init__(config) | |
self.model = Kosmos2VisionTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.embeddings.patch_embedding | |
def forward( | |
self, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
""" | |
return self.model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class Kosmos2TextModel(Kosmos2PreTrainedModel): | |
config_class = Kosmos2TextConfig | |
def __init__(self, config: Kosmos2TextConfig): | |
super().__init__(config) | |
self.model = Kosmos2TextTransformer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
r""" | |
Returns: | |
""" | |
return self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
image_embeds=image_embeds, | |
image_embeds_position_mask=image_embeds_position_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
position_ids=position_ids, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel): | |
config_class = Kosmos2TextConfig | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config: Kosmos2TextConfig): | |
super().__init__(config) | |
self.model = Kosmos2TextTransformer(config) | |
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self) -> nn.Module: | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are | |
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if use_cache: | |
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") | |
use_cache = False | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
image_embeds=image_embeds, | |
image_embeds_position_mask=image_embeds_position_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
position_ids=position_ids, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
lm_logits = self.lm_head(outputs[0]) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(lm_logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
batch_size, seq_length, vocab_size = shift_logits.shape | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | |
) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
image_embeds=None, | |
image_embeds_position_mask=None, | |
past_key_values=None, | |
attention_mask=None, | |
use_cache=None, | |
**model_kwargs, | |
): | |
input_shape = input_ids.shape | |
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
if attention_mask is None: | |
attention_mask = input_ids.new_ones(input_shape) | |
position_ids = None | |
# cut input_ids if past_key_values is used | |
if past_key_values is not None: | |
position_ids = create_position_ids_from_input_ids( | |
input_ids, | |
padding_idx=self.config.pad_token_id, | |
past_key_values_length=0, | |
)[:, -1:] | |
input_ids = input_ids[:, -1:] | |
# the image info. is already encoded into the past keys/values | |
image_embeds = None | |
image_embeds_position_mask = None | |
elif image_embeds_position_mask is not None: | |
# appending `False` to `image_embeds_position_mask` (because `input_ids` grows during generation) | |
batch_size, seq_len = input_ids.size() | |
mask_len = image_embeds_position_mask.size()[-1] | |
image_embeds_position_mask = torch.cat( | |
( | |
image_embeds_position_mask, | |
torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device), | |
), | |
dim=1, | |
) | |
return { | |
"input_ids": input_ids, | |
"image_embeds": image_embeds, | |
"image_embeds_position_mask": image_embeds_position_mask, | |
"past_key_values": past_key_values, | |
"attention_mask": attention_mask, | |
"position_ids": position_ids, | |
"use_cache": use_cache, | |
} | |
# Copied from transformers.models.umt5.modeling_umt5.UMT5ForConditionalGeneration._reorder_cache | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
class Kosmos2ImageToTextProjection(nn.Module): | |
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)""" | |
def __init__(self, config: Kosmos2Config): | |
super().__init__() | |
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim) | |
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim)) | |
self.x_attn = KosmosTextAttention( | |
config.text_config, | |
config.text_config.embed_dim, | |
config.text_config.attention_heads, | |
dropout=config.text_config.attention_dropout, | |
is_decoder=False, | |
add_inner_attn_layernorm=False, | |
) | |
def forward(self, features): | |
hidden_states = self.dense(features) | |
# shape = [batch, latent_query_num, h_dim] | |
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1) | |
key_value_states = torch.cat([hidden_states, latent_query], dim=1) | |
hidden_states, attn_weights, _ = self.x_attn( | |
hidden_states=latent_query, | |
encoder_hidden_states=key_value_states, | |
past_key_value=None, | |
attention_mask=None, | |
output_attentions=None, | |
) | |
return hidden_states, attn_weights | |
class Kosmos2Model(Kosmos2PreTrainedModel): | |
config_class = Kosmos2Config | |
main_input_name = "pixel_values" | |
def __init__(self, config: Kosmos2Config): | |
super().__init__(config) | |
self.text_model = Kosmos2TextModel(config.text_config) | |
self.vision_model = Kosmos2VisionModel(config.vision_config) | |
self.image_to_text_projection = Kosmos2ImageToTextProjection(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.text_model.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.text_model.model.embed_tokens = value | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
input_ids: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Kosmos2ModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Kosmos2Model | |
>>> model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224") | |
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") | |
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> text = ( | |
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>" | |
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>" | |
... "</object>" | |
... ) | |
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True) | |
>>> last_hidden_state = model( | |
... pixel_values=inputs["pixel_values"], | |
... input_ids=inputs["input_ids"], | |
... attention_mask=inputs["attention_mask"], | |
... image_embeds_position_mask=inputs["image_embeds_position_mask"], | |
... ).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 91, 2048] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_model_output = None | |
projection_attentions = None | |
if image_embeds is None: | |
if pixel_values is None: | |
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.") | |
vision_model_output = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`. | |
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0]) | |
# normalized features | |
image_embeds = nn.functional.normalize(image_embeds, dim=-1) | |
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) | |
outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
image_embeds=image_embeds, | |
image_embeds_position_mask=image_embeds_position_mask, | |
head_mask=head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
position_ids=position_ids, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
outputs = outputs + (image_embeds, projection_attentions, vision_model_output) | |
return tuple(output for output in outputs if output is not None) | |
return Kosmos2ModelOutput( | |
last_hidden_state=outputs.last_hidden_state, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_embeds=image_embeds, | |
projection_attentions=projection_attentions, | |
vision_model_output=vision_model_output, | |
) | |
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel): | |
config_class = Kosmos2Config | |
main_input_name = "pixel_values" | |
_tied_weights_keys = ["text_model.lm_head.weight"] | |
def __init__(self, config: Kosmos2Config): | |
super().__init__(config) | |
self.text_model = Kosmos2TextForCausalLM(config.text_config) | |
self.vision_model = Kosmos2VisionModel(config.vision_config) | |
self.image_to_text_projection = Kosmos2ImageToTextProjection(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.text_model.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.text_model.model.embed_tokens = value | |
def get_output_embeddings(self) -> nn.Module: | |
return self.text_model.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
self.text_model.set_output_embeddings(new_embeddings) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
input_ids: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in | |
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are | |
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration | |
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("microsoft/kosmos-2-patch14-224") | |
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224") | |
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> prompt = "<grounding> An image of" | |
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") | |
>>> generated_ids = model.generate( | |
... pixel_values=inputs["pixel_values"], | |
... input_ids=inputs["input_ids"], | |
... attention_mask=inputs["attention_mask"], | |
... image_embeds=None, | |
... image_embeds_position_mask=inputs["image_embeds_position_mask"], | |
... use_cache=True, | |
... max_new_tokens=64, | |
... ) | |
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False) | |
>>> processed_text | |
'<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.' | |
>>> caption, entities = processor.post_process_generation(generated_text) | |
>>> caption | |
'An image of a snowman warming himself by a fire.' | |
>>> entities | |
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
vision_model_output = None | |
projection_attentions = None | |
if image_embeds is None: | |
if pixel_values is None: | |
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.") | |
vision_model_output = self.vision_model( | |
pixel_values=pixel_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`. | |
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0]) | |
# normalized features | |
image_embeds = nn.functional.normalize(image_embeds, dim=-1) | |
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) | |
lm_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
image_embeds=image_embeds, | |
image_embeds_position_mask=image_embeds_position_mask, | |
head_mask=head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
position_ids=position_ids, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
outputs = lm_outputs + (image_embeds, projection_attentions, vision_model_output) | |
return tuple(output for output in outputs if output is not None) | |
return Kosmos2ForConditionalGenerationModelOutput( | |
loss=lm_outputs.loss, | |
logits=lm_outputs.logits, | |
past_key_values=lm_outputs.past_key_values, | |
hidden_states=lm_outputs.hidden_states, | |
attentions=lm_outputs.attentions, | |
image_embeds=image_embeds, | |
projection_attentions=projection_attentions, | |
vision_model_output=vision_model_output, | |
) | |
def generate( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
image_embeds_position_mask: Optional[torch.Tensor] = None, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_embeds: Optional[torch.Tensor] = None, | |
**kwargs, | |
): | |
# in order to allow `inputs` argument (as in `GenerationMixin`) | |
inputs = kwargs.pop("inputs", None) | |
if pixel_values is not None and inputs is not None: | |
raise ValueError( | |
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed." | |
f"Make sure to either pass `inputs` or pixel_values=..." | |
) | |
if pixel_values is None and inputs is not None: | |
pixel_values = inputs | |
if image_embeds is None: | |
vision_model_output = self.vision_model(pixel_values) | |
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`. | |
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0]) | |
# normalized features | |
image_embeds = nn.functional.normalize(image_embeds, dim=-1) | |
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds) | |
output = self.text_model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
image_embeds=image_embeds, | |
image_embeds_position_mask=image_embeds_position_mask, | |
**kwargs, | |
) | |
return output | |