Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlm
/configuration_layoutlm.py
# coding=utf-8 | |
# Copyright 2010, The Microsoft Research Asia LayoutLM Team authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""LayoutLM model configuration""" | |
from collections import OrderedDict | |
from typing import Any, List, Mapping, Optional | |
from ... import PretrainedConfig, PreTrainedTokenizer | |
from ...onnx import OnnxConfig, PatchingSpec | |
from ...utils import TensorType, is_torch_available, logging | |
logger = logging.get_logger(__name__) | |
class LayoutLMConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a | |
LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the LayoutLM | |
[microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture. | |
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the | |
documentation from [`BertConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the | |
*inputs_ids* passed to the forward method of [`LayoutLMModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The value used to pad input_ids. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
max_2d_position_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum value that the 2D position embedding might ever used. Typically set this to something large | |
just in case (e.g., 1024). | |
Examples: | |
```python | |
>>> from transformers import LayoutLMConfig, LayoutLMModel | |
>>> # Initializing a LayoutLM configuration | |
>>> configuration = LayoutLMConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = LayoutLMModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "layoutlm" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
position_embedding_type="absolute", | |
use_cache=True, | |
max_2d_position_embeddings=1024, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.max_2d_position_embeddings = max_2d_position_embeddings | |
class LayoutLMOnnxConfig(OnnxConfig): | |
def __init__( | |
self, | |
config: PretrainedConfig, | |
task: str = "default", | |
patching_specs: List[PatchingSpec] = None, | |
): | |
super().__init__(config, task=task, patching_specs=patching_specs) | |
self.max_2d_positions = config.max_2d_position_embeddings - 1 | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("input_ids", {0: "batch", 1: "sequence"}), | |
("bbox", {0: "batch", 1: "sequence"}), | |
("attention_mask", {0: "batch", 1: "sequence"}), | |
("token_type_ids", {0: "batch", 1: "sequence"}), | |
] | |
) | |
def generate_dummy_inputs( | |
self, | |
tokenizer: PreTrainedTokenizer, | |
batch_size: int = -1, | |
seq_length: int = -1, | |
is_pair: bool = False, | |
framework: Optional[TensorType] = None, | |
) -> Mapping[str, Any]: | |
""" | |
Generate inputs to provide to the ONNX exporter for the specific framework | |
Args: | |
tokenizer: The tokenizer associated with this model configuration | |
batch_size: The batch size (int) to export the model for (-1 means dynamic axis) | |
seq_length: The sequence length (int) to export the model for (-1 means dynamic axis) | |
is_pair: Indicate if the input is a pair (sentence 1, sentence 2) | |
framework: The framework (optional) the tokenizer will generate tensor for | |
Returns: | |
Mapping[str, Tensor] holding the kwargs to provide to the model's forward function | |
""" | |
input_dict = super().generate_dummy_inputs( | |
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework | |
) | |
# Generate a dummy bbox | |
box = [48, 84, 73, 128] | |
if not framework == TensorType.PYTORCH: | |
raise NotImplementedError("Exporting LayoutLM to ONNX is currently only supported for PyTorch.") | |
if not is_torch_available(): | |
raise ValueError("Cannot generate dummy inputs without PyTorch installed.") | |
import torch | |
batch_size, seq_length = input_dict["input_ids"].shape | |
input_dict["bbox"] = torch.tensor([*[box] * seq_length]).tile(batch_size, 1, 1) | |
return input_dict | |