Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlmv2
/modeling_layoutlmv2.py
# coding=utf-8 | |
# Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch LayoutLMv2 model.""" | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_detectron2_available, | |
logging, | |
replace_return_docstrings, | |
requires_backends, | |
) | |
from .configuration_layoutlmv2 import LayoutLMv2Config | |
# soft dependency | |
if is_detectron2_available(): | |
import detectron2 | |
from detectron2.modeling import META_ARCH_REGISTRY | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased" | |
_CONFIG_FOR_DOC = "LayoutLMv2Config" | |
class LayoutLMv2Embeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super(LayoutLMv2Embeddings, self).__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) | |
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) | |
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) | |
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
def _calc_spatial_position_embeddings(self, bbox): | |
try: | |
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) | |
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) | |
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) | |
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) | |
except IndexError as e: | |
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e | |
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) | |
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) | |
spatial_position_embeddings = torch.cat( | |
[ | |
left_position_embeddings, | |
upper_position_embeddings, | |
right_position_embeddings, | |
lower_position_embeddings, | |
h_position_embeddings, | |
w_position_embeddings, | |
], | |
dim=-1, | |
) | |
return spatial_position_embeddings | |
class LayoutLMv2SelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.fast_qkv = config.fast_qkv | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.has_relative_attention_bias = config.has_relative_attention_bias | |
self.has_spatial_attention_bias = config.has_spatial_attention_bias | |
if config.fast_qkv: | |
self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False) | |
self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) | |
self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size)) | |
else: | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def compute_qkv(self, hidden_states): | |
if self.fast_qkv: | |
qkv = self.qkv_linear(hidden_states) | |
q, k, v = torch.chunk(qkv, 3, dim=-1) | |
if q.ndimension() == self.q_bias.ndimension(): | |
q = q + self.q_bias | |
v = v + self.v_bias | |
else: | |
_sz = (1,) * (q.ndimension() - 1) + (-1,) | |
q = q + self.q_bias.view(*_sz) | |
v = v + self.v_bias.view(*_sz) | |
else: | |
q = self.query(hidden_states) | |
k = self.key(hidden_states) | |
v = self.value(hidden_states) | |
return q, k, v | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
q, k, v = self.compute_qkv(hidden_states) | |
# (B, L, H*D) -> (B, H, L, D) | |
query_layer = self.transpose_for_scores(q) | |
key_layer = self.transpose_for_scores(k) | |
value_layer = self.transpose_for_scores(v) | |
query_layer = query_layer / math.sqrt(self.attention_head_size) | |
# [BSZ, NAT, L, L] | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.has_relative_attention_bias: | |
attention_scores += rel_pos | |
if self.has_spatial_attention_bias: | |
attention_scores += rel_2d_pos | |
attention_scores = attention_scores.float().masked_fill_( | |
attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min | |
) | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class LayoutLMv2Attention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = LayoutLMv2SelfAttention(config) | |
self.output = LayoutLMv2SelfOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class LayoutLMv2SelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2 | |
class LayoutLMv2Intermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM | |
class LayoutLMv2Output(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LayoutLMv2Layer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = LayoutLMv2Attention(config) | |
self.intermediate = LayoutLMv2Intermediate(config) | |
self.output = LayoutLMv2Output(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small | |
absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions | |
>=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should | |
allow for more graceful generalization to longer sequences than the model has been trained on. | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
ret = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
ret += (relative_position > 0).long() * num_buckets | |
n = torch.abs(relative_position) | |
else: | |
n = torch.max(-relative_position, torch.zeros_like(relative_position)) | |
# now n is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).to(torch.long) | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
class LayoutLMv2Encoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)]) | |
self.has_relative_attention_bias = config.has_relative_attention_bias | |
self.has_spatial_attention_bias = config.has_spatial_attention_bias | |
if self.has_relative_attention_bias: | |
self.rel_pos_bins = config.rel_pos_bins | |
self.max_rel_pos = config.max_rel_pos | |
self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) | |
if self.has_spatial_attention_bias: | |
self.max_rel_2d_pos = config.max_rel_2d_pos | |
self.rel_2d_pos_bins = config.rel_2d_pos_bins | |
self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) | |
self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) | |
self.gradient_checkpointing = False | |
def _calculate_1d_position_embeddings(self, position_ids): | |
rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) | |
rel_pos = relative_position_bucket( | |
rel_pos_mat, | |
num_buckets=self.rel_pos_bins, | |
max_distance=self.max_rel_pos, | |
) | |
# Since this is a simple indexing operation that is independent of the input, | |
# no need to track gradients for this operation | |
# | |
# Without this no_grad context, training speed slows down significantly | |
with torch.no_grad(): | |
rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) | |
rel_pos = rel_pos.contiguous() | |
return rel_pos | |
def _calculate_2d_position_embeddings(self, bbox): | |
position_coord_x = bbox[:, :, 0] | |
position_coord_y = bbox[:, :, 3] | |
rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) | |
rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) | |
rel_pos_x = relative_position_bucket( | |
rel_pos_x_2d_mat, | |
num_buckets=self.rel_2d_pos_bins, | |
max_distance=self.max_rel_2d_pos, | |
) | |
rel_pos_y = relative_position_bucket( | |
rel_pos_y_2d_mat, | |
num_buckets=self.rel_2d_pos_bins, | |
max_distance=self.max_rel_2d_pos, | |
) | |
# Since this is a simple indexing operation that is independent of the input, | |
# no need to track gradients for this operation | |
# | |
# Without this no_grad context, training speed slows down significantly | |
with torch.no_grad(): | |
rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) | |
rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) | |
rel_pos_x = rel_pos_x.contiguous() | |
rel_pos_y = rel_pos_y.contiguous() | |
rel_2d_pos = rel_pos_x + rel_pos_y | |
return rel_2d_pos | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
bbox=None, | |
position_ids=None, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None | |
rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class LayoutLMv2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LayoutLMv2Config | |
base_model_prefix = "layoutlmv2" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, LayoutLMv2Model): | |
if hasattr(module, "visual_segment_embedding"): | |
module.visual_segment_embedding.data.normal_(mean=0.0, std=self.config.initializer_range) | |
def my_convert_sync_batchnorm(module, process_group=None): | |
# same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d` | |
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): | |
return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group) | |
module_output = module | |
if isinstance(module, detectron2.layers.FrozenBatchNorm2d): | |
module_output = torch.nn.SyncBatchNorm( | |
num_features=module.num_features, | |
eps=module.eps, | |
affine=True, | |
track_running_stats=True, | |
process_group=process_group, | |
) | |
module_output.weight = torch.nn.Parameter(module.weight) | |
module_output.bias = torch.nn.Parameter(module.bias) | |
module_output.running_mean = module.running_mean | |
module_output.running_var = module.running_var | |
module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device) | |
for name, child in module.named_children(): | |
module_output.add_module(name, my_convert_sync_batchnorm(child, process_group)) | |
del module | |
return module_output | |
class LayoutLMv2VisualBackbone(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.cfg = config.get_detectron2_config() | |
meta_arch = self.cfg.MODEL.META_ARCHITECTURE | |
model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg) | |
assert isinstance(model.backbone, detectron2.modeling.backbone.FPN) | |
self.backbone = model.backbone | |
assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD) | |
num_channels = len(self.cfg.MODEL.PIXEL_MEAN) | |
self.register_buffer( | |
"pixel_mean", | |
torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1), | |
persistent=False, | |
) | |
self.register_buffer( | |
"pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False | |
) | |
self.out_feature_key = "p2" | |
if torch.are_deterministic_algorithms_enabled(): | |
logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`") | |
input_shape = (224, 224) | |
backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride | |
self.pool = nn.AvgPool2d( | |
( | |
math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]), | |
math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]), | |
) | |
) | |
else: | |
self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2]) | |
if len(config.image_feature_pool_shape) == 2: | |
config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels) | |
assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2] | |
def forward(self, images): | |
images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std | |
features = self.backbone(images_input) | |
features = features[self.out_feature_key] | |
features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous() | |
return features | |
def synchronize_batch_norm(self): | |
if not ( | |
torch.distributed.is_available() | |
and torch.distributed.is_initialized() | |
and torch.distributed.get_rank() > -1 | |
): | |
raise RuntimeError("Make sure torch.distributed is set up properly.") | |
self_rank = torch.distributed.get_rank() | |
node_size = torch.cuda.device_count() | |
world_size = torch.distributed.get_world_size() | |
if not (world_size % node_size == 0): | |
raise RuntimeError("Make sure the number of processes can be divided by the number of nodes") | |
node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)] | |
sync_bn_groups = [ | |
torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size) | |
] | |
node_rank = self_rank // node_size | |
self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank]) | |
LAYOUTLMV2_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
LAYOUTLMV2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `{0}`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): | |
Bounding boxes of each input sequence tokens. Selected in the range `[0, | |
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) | |
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, | |
y1) represents the position of the lower right corner. | |
image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`): | |
Batch of document images. | |
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `{0}`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class LayoutLMv2Pooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class LayoutLMv2Model(LayoutLMv2PreTrainedModel): | |
def __init__(self, config): | |
requires_backends(self, "detectron2") | |
super().__init__(config) | |
self.config = config | |
self.has_visual_segment_embedding = config.has_visual_segment_embedding | |
self.embeddings = LayoutLMv2Embeddings(config) | |
self.visual = LayoutLMv2VisualBackbone(config) | |
self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size) | |
if self.has_visual_segment_embedding: | |
self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0]) | |
self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.visual_dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.encoder = LayoutLMv2Encoder(config) | |
self.pooler = LayoutLMv2Pooler(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(input_ids) | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings.word_embeddings(input_ids) | |
position_embeddings = self.embeddings.position_embeddings(position_ids) | |
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox) | |
token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings | |
embeddings = self.embeddings.LayerNorm(embeddings) | |
embeddings = self.embeddings.dropout(embeddings) | |
return embeddings | |
def _calc_img_embeddings(self, image, bbox, position_ids): | |
visual_embeddings = self.visual_proj(self.visual(image)) | |
position_embeddings = self.embeddings.position_embeddings(position_ids) | |
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox) | |
embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings | |
if self.has_visual_segment_embedding: | |
embeddings += self.visual_segment_embedding | |
embeddings = self.visual_LayerNorm(embeddings) | |
embeddings = self.visual_dropout(embeddings) | |
return embeddings | |
def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape): | |
visual_bbox_x = torch.div( | |
torch.arange( | |
0, | |
1000 * (image_feature_pool_shape[1] + 1), | |
1000, | |
device=device, | |
dtype=bbox.dtype, | |
), | |
self.config.image_feature_pool_shape[1], | |
rounding_mode="floor", | |
) | |
visual_bbox_y = torch.div( | |
torch.arange( | |
0, | |
1000 * (self.config.image_feature_pool_shape[0] + 1), | |
1000, | |
device=device, | |
dtype=bbox.dtype, | |
), | |
self.config.image_feature_pool_shape[0], | |
rounding_mode="floor", | |
) | |
visual_bbox = torch.stack( | |
[ | |
visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1), | |
visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), | |
visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1), | |
visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1), | |
], | |
dim=-1, | |
).view(-1, bbox.size(-1)) | |
visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1) | |
return visual_bbox | |
def _get_input_shape(self, input_ids=None, inputs_embeds=None): | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
return input_ids.size() | |
elif inputs_embeds is not None: | |
return inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
image: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Return: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed | |
>>> from PIL import Image | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> set_seed(0) | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
>>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True) | |
>>> image_path = dataset["test"][0]["file"] | |
>>> image = Image.open(image_path).convert("RGB") | |
>>> encoding = processor(image, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> last_hidden_states.shape | |
torch.Size([1, 342, 768]) | |
``` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
input_shape = self._get_input_shape(input_ids, inputs_embeds) | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
visual_shape = list(input_shape) | |
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1] | |
visual_shape = torch.Size(visual_shape) | |
# needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur | |
final_shape = list(self._get_input_shape(input_ids, inputs_embeds)) | |
final_shape[1] += visual_shape[1] | |
final_shape = torch.Size(final_shape) | |
visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape) | |
final_bbox = torch.cat([bbox, visual_bbox], dim=1) | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
visual_attention_mask = torch.ones(visual_shape, device=device) | |
final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
if position_ids is None: | |
seq_length = input_shape[1] | |
position_ids = self.embeddings.position_ids[:, :seq_length] | |
position_ids = position_ids.expand(input_shape) | |
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat( | |
input_shape[0], 1 | |
) | |
final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) | |
if bbox is None: | |
bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) | |
text_layout_emb = self._calc_text_embeddings( | |
input_ids=input_ids, | |
bbox=bbox, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
visual_emb = self._calc_img_embeddings( | |
image=image, | |
bbox=visual_bbox, | |
position_ids=visual_position_ids, | |
) | |
final_emb = torch.cat([text_layout_emb, visual_emb], dim=1) | |
extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2) | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) | |
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
encoder_outputs = self.encoder( | |
final_emb, | |
extended_attention_mask, | |
bbox=final_bbox, | |
position_ids=final_position_ids, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.layoutlmv2 = LayoutLMv2Model(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.layoutlmv2.embeddings.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
image: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed | |
>>> from PIL import Image | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> set_seed(0) | |
>>> dataset = load_dataset("aharley/rvl_cdip", split="train", streaming=True, trust_remote_code=True) | |
>>> data = next(iter(dataset)) | |
>>> image = data["image"].convert("RGB") | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
>>> model = LayoutLMv2ForSequenceClassification.from_pretrained( | |
... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes | |
... ) | |
>>> encoding = processor(image, return_tensors="pt") | |
>>> sequence_label = torch.tensor([data["label"]]) | |
>>> outputs = model(**encoding, labels=sequence_label) | |
>>> loss, logits = outputs.loss, outputs.logits | |
>>> predicted_idx = logits.argmax(dim=-1).item() | |
>>> predicted_answer = dataset.info.features["label"].names[4] | |
>>> predicted_idx, predicted_answer # results are not good without further fine-tuning | |
(7, 'advertisement') | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
visual_shape = list(input_shape) | |
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1] | |
visual_shape = torch.Size(visual_shape) | |
final_shape = list(input_shape) | |
final_shape[1] += visual_shape[1] | |
final_shape = torch.Size(final_shape) | |
visual_bbox = self.layoutlmv2._calc_visual_bbox( | |
self.config.image_feature_pool_shape, bbox, device, final_shape | |
) | |
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat( | |
input_shape[0], 1 | |
) | |
initial_image_embeddings = self.layoutlmv2._calc_img_embeddings( | |
image=image, | |
bbox=visual_bbox, | |
position_ids=visual_position_ids, | |
) | |
outputs = self.layoutlmv2( | |
input_ids=input_ids, | |
bbox=bbox, | |
image=image, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:] | |
cls_final_output = sequence_output[:, 0, :] | |
# average-pool the visual embeddings | |
pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1) | |
pooled_final_image_embeddings = final_image_embeddings.mean(dim=1) | |
# concatenate with cls_final_output | |
sequence_output = torch.cat( | |
[cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1 | |
) | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.layoutlmv2 = LayoutLMv2Model(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.layoutlmv2.embeddings.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
image: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed | |
>>> from PIL import Image | |
>>> from datasets import load_dataset | |
>>> set_seed(0) | |
>>> datasets = load_dataset("nielsr/funsd", split="test", trust_remote_code=True) | |
>>> labels = datasets.features["ner_tags"].feature.names | |
>>> id2label = {v: k for v, k in enumerate(labels)} | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr") | |
>>> model = LayoutLMv2ForTokenClassification.from_pretrained( | |
... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels) | |
... ) | |
>>> data = datasets[0] | |
>>> image = Image.open(data["image_path"]).convert("RGB") | |
>>> words = data["words"] | |
>>> boxes = data["bboxes"] # make sure to normalize your bounding boxes | |
>>> word_labels = data["ner_tags"] | |
>>> encoding = processor( | |
... image, | |
... words, | |
... boxes=boxes, | |
... word_labels=word_labels, | |
... padding="max_length", | |
... truncation=True, | |
... return_tensors="pt", | |
... ) | |
>>> outputs = model(**encoding) | |
>>> logits, loss = outputs.logits, outputs.loss | |
>>> predicted_token_class_ids = logits.argmax(-1) | |
>>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]] | |
>>> predicted_tokens_classes[:5] # results are not good without further fine-tuning | |
['I-HEADER', 'I-HEADER', 'I-QUESTION', 'I-HEADER', 'I-QUESTION'] | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.layoutlmv2( | |
input_ids=input_ids, | |
bbox=bbox, | |
image=image, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# only take the text part of the output representations | |
sequence_output = outputs[0][:, :seq_length] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel): | |
def __init__(self, config, has_visual_segment_embedding=True): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
config.has_visual_segment_embedding = has_visual_segment_embedding | |
self.layoutlmv2 = LayoutLMv2Model(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.layoutlmv2.embeddings.word_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
image: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
Returns: | |
Example: | |
In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us | |
a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image). | |
```python | |
>>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed | |
>>> import torch | |
>>> from PIL import Image | |
>>> from datasets import load_dataset | |
>>> set_seed(0) | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
>>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True) | |
>>> image_path = dataset["test"][0]["file"] | |
>>> image = Image.open(image_path).convert("RGB") | |
>>> question = "When is coffee break?" | |
>>> encoding = processor(image, question, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> predicted_start_idx = outputs.start_logits.argmax(-1).item() | |
>>> predicted_end_idx = outputs.end_logits.argmax(-1).item() | |
>>> predicted_start_idx, predicted_end_idx | |
(30, 191) | |
>>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1] | |
>>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens) | |
>>> predicted_answer # results are not good without further fine-tuning | |
'44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president “ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from' | |
``` | |
```python | |
>>> target_start_index = torch.tensor([7]) | |
>>> target_end_index = torch.tensor([14]) | |
>>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index) | |
>>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item() | |
>>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item() | |
>>> predicted_answer_span_start, predicted_answer_span_end | |
(30, 191) | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.layoutlmv2( | |
input_ids=input_ids, | |
bbox=bbox, | |
image=image, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# only take the text part of the output representations | |
sequence_output = outputs[0][:, :seq_length] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |