Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlmv2
/tokenization_layoutlmv2.py
# coding=utf-8 | |
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization class for LayoutLMv2.""" | |
import collections | |
import os | |
import sys | |
import unicodedata | |
from typing import Dict, List, Optional, Tuple, Union | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace | |
from ...tokenization_utils_base import ( | |
BatchEncoding, | |
EncodedInput, | |
PreTokenizedInput, | |
TextInput, | |
TextInputPair, | |
TruncationStrategy, | |
) | |
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | |
LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING = r""" | |
add_special_tokens (`bool`, *optional*, defaults to `True`): | |
Whether or not to encode the sequences with the special tokens relative to their model. | |
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Activates and controls padding. Accepts the following values: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
Activates and controls truncation. Accepts the following values: | |
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or | |
to the maximum acceptable input length for the model if that argument is not provided. This will | |
truncate token by token, removing a token from the longest sequence in the pair if a pair of | |
sequences (or a batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths | |
greater than the model maximum admissible input size). | |
max_length (`int`, *optional*): | |
Controls the maximum length to use by one of the truncation/padding parameters. | |
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length | |
is required by one of the truncation/padding parameters. If the model has no specific maximum input | |
length (like XLNet) truncation/padding to a maximum length will be deactivated. | |
stride (`int`, *optional*, defaults to 0): | |
If set to a number along with `max_length`, the overflowing tokens returned when | |
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence | |
returned to provide some overlap between truncated and overflowing sequences. The value of this | |
argument defines the number of overlapping tokens. | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable | |
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). | |
return_tensors (`str` or [`~file_utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
""" | |
LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" | |
return_token_type_ids (`bool`, *optional*): | |
Whether to return token type IDs. If left to the default, will return the token type IDs according to | |
the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are token type IDs?](../glossary#token-type-ids) | |
return_attention_mask (`bool`, *optional*): | |
Whether to return the attention mask. If left to the default, will return the attention mask according | |
to the specific tokenizer's default, defined by the `return_outputs` attribute. | |
[What are attention masks?](../glossary#attention-mask) | |
return_overflowing_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch | |
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead | |
of returning overflowing tokens. | |
return_special_tokens_mask (`bool`, *optional*, defaults to `False`): | |
Whether or not to return special tokens mask information. | |
return_offsets_mapping (`bool`, *optional*, defaults to `False`): | |
Whether or not to return `(char_start, char_end)` for each token. | |
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using | |
Python's tokenizer, this method will raise `NotImplementedError`. | |
return_length (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the lengths of the encoded inputs. | |
verbose (`bool`, *optional*, defaults to `True`): | |
Whether or not to print more information and warnings. | |
**kwargs: passed to the `self.tokenize()` method | |
Return: | |
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. | |
[What are input IDs?](../glossary#input-ids) | |
- **bbox** -- List of bounding boxes to be fed to a model. | |
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or | |
if *"token_type_ids"* is in `self.model_input_names`). | |
[What are token type IDs?](../glossary#token-type-ids) | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). | |
[What are attention masks?](../glossary#attention-mask) | |
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). | |
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and | |
`return_overflowing_tokens=True`). | |
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and | |
`return_overflowing_tokens=True`). | |
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying | |
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). | |
- **length** -- The length of the inputs (when `return_length=True`). | |
""" | |
def load_vocab(vocab_file): | |
"""Loads a vocabulary file into a dictionary.""" | |
vocab = collections.OrderedDict() | |
with open(vocab_file, "r", encoding="utf-8") as reader: | |
tokens = reader.readlines() | |
for index, token in enumerate(tokens): | |
token = token.rstrip("\n") | |
vocab[token] = index | |
return vocab | |
def whitespace_tokenize(text): | |
"""Runs basic whitespace cleaning and splitting on a piece of text.""" | |
text = text.strip() | |
if not text: | |
return [] | |
tokens = text.split() | |
return tokens | |
table = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith("P")) | |
def subfinder(mylist, pattern): | |
matches = [] | |
indices = [] | |
for idx, i in enumerate(range(len(mylist))): | |
if mylist[i] == pattern[0] and mylist[i : i + len(pattern)] == pattern: | |
matches.append(pattern) | |
indices.append(idx) | |
if matches: | |
return matches[0], indices[0] | |
else: | |
return None, 0 | |
class LayoutLMv2Tokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a LayoutLMv2 tokenizer. Based on WordPiece. [`LayoutLMv2Tokenizer`] can be used to turn words, word-level | |
bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and | |
optional `labels` (for token classification). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
[`LayoutLMv2Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the | |
word-level bounding boxes into token-level bounding boxes. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
def __init__( | |
self, | |
vocab_file, | |
do_lower_case=True, | |
do_basic_tokenize=True, | |
never_split=None, | |
unk_token="[UNK]", | |
sep_token="[SEP]", | |
pad_token="[PAD]", | |
cls_token="[CLS]", | |
mask_token="[MASK]", | |
cls_token_box=[0, 0, 0, 0], | |
sep_token_box=[1000, 1000, 1000, 1000], | |
pad_token_box=[0, 0, 0, 0], | |
pad_token_label=-100, | |
only_label_first_subword=True, | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
model_max_length: int = 512, | |
additional_special_tokens: Optional[List[str]] = None, | |
**kwargs, | |
): | |
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token | |
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token | |
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token | |
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token | |
mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token | |
if not os.path.isfile(vocab_file): | |
raise ValueError( | |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" | |
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
) | |
self.vocab = load_vocab(vocab_file) | |
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) | |
self.do_basic_tokenize = do_basic_tokenize | |
if do_basic_tokenize: | |
self.basic_tokenizer = BasicTokenizer( | |
do_lower_case=do_lower_case, | |
never_split=never_split, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
) | |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) | |
# additional properties | |
self.cls_token_box = cls_token_box | |
self.sep_token_box = sep_token_box | |
self.pad_token_box = pad_token_box | |
self.pad_token_label = pad_token_label | |
self.only_label_first_subword = only_label_first_subword | |
super().__init__( | |
do_lower_case=do_lower_case, | |
do_basic_tokenize=do_basic_tokenize, | |
never_split=never_split, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
cls_token_box=cls_token_box, | |
sep_token_box=sep_token_box, | |
pad_token_box=pad_token_box, | |
pad_token_label=pad_token_label, | |
only_label_first_subword=only_label_first_subword, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
model_max_length=model_max_length, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs, | |
) | |
def do_lower_case(self): | |
return self.basic_tokenizer.do_lower_case | |
def vocab_size(self): | |
return len(self.vocab) | |
def get_vocab(self): | |
return dict(self.vocab, **self.added_tokens_encoder) | |
def _tokenize(self, text): | |
split_tokens = [] | |
if self.do_basic_tokenize: | |
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): | |
# If the token is part of the never_split set | |
if token in self.basic_tokenizer.never_split: | |
split_tokens.append(token) | |
else: | |
split_tokens += self.wordpiece_tokenizer.tokenize(token) | |
else: | |
split_tokens = self.wordpiece_tokenizer.tokenize(text) | |
return split_tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.vocab.get(token, self.vocab.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.ids_to_tokens.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
out_string = " ".join(tokens).replace(" ##", "").strip() | |
return out_string | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A BERT sequence has the following format: | |
- single sequence: `[CLS] X [SEP]` | |
- pair of sequences: `[CLS] A [SEP] B [SEP]` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
cls = [self.cls_token_id] | |
sep = [self.sep_token_id] | |
return cls + token_ids_0 + sep + token_ids_1 + sep | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is not None: | |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence | |
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second | |
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
index = 0 | |
if os.path.isdir(save_directory): | |
vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
else: | |
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory | |
with open(vocab_file, "w", encoding="utf-8") as writer: | |
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." | |
" Please check that the vocabulary is not corrupted!" | |
) | |
index = token_index | |
writer.write(token + "\n") | |
index += 1 | |
return (vocab_file,) | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], | |
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, | |
boxes: Union[List[List[int]], List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of | |
sequences with word-level normalized bounding boxes and optional labels. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings | |
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of | |
words). | |
text_pair (`List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings | |
(pretokenized string). | |
boxes (`List[List[int]]`, `List[List[List[int]]]`): | |
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. | |
word_labels (`List[int]`, `List[List[int]]`, *optional*): | |
Word-level integer labels (for token classification tasks such as FUNSD, CORD). | |
""" | |
# Input type checking for clearer error | |
def _is_valid_text_input(t): | |
if isinstance(t, str): | |
# Strings are fine | |
return True | |
elif isinstance(t, (list, tuple)): | |
# List are fine as long as they are... | |
if len(t) == 0: | |
# ... empty | |
return True | |
elif isinstance(t[0], str): | |
# ... list of strings | |
return True | |
elif isinstance(t[0], (list, tuple)): | |
# ... list with an empty list or with a list of strings | |
return len(t[0]) == 0 or isinstance(t[0][0], str) | |
else: | |
return False | |
else: | |
return False | |
if text_pair is not None: | |
# in case text + text_pair are provided, text = questions, text_pair = words | |
if not _is_valid_text_input(text): | |
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") | |
if not isinstance(text_pair, (list, tuple)): | |
raise ValueError( | |
"Words must be of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
else: | |
# in case only text is provided => must be words | |
if not isinstance(text, (list, tuple)): | |
raise ValueError( | |
"Words must be of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
if text_pair is not None: | |
is_batched = isinstance(text, (list, tuple)) | |
else: | |
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) | |
words = text if text_pair is None else text_pair | |
if boxes is None: | |
raise ValueError("You must provide corresponding bounding boxes") | |
if is_batched: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide words and boxes for an equal amount of examples") | |
for words_example, boxes_example in zip(words, boxes): | |
if len(words_example) != len(boxes_example): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
else: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
if is_batched: | |
if text_pair is not None and len(text) != len(text_pair): | |
raise ValueError( | |
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" | |
f" {len(text_pair)}." | |
) | |
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text | |
is_pair = bool(text_pair is not None) | |
return self.batch_encode_plus( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
else: | |
return self.encode_plus( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def batch_encode_plus( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._batch_encode_plus( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def _batch_encode_plus( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast." | |
) | |
batch_outputs = self._batch_prepare_for_model( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=return_tensors, | |
verbose=verbose, | |
) | |
return BatchEncoding(batch_outputs) | |
def _batch_prepare_for_model( | |
self, | |
batch_text_or_text_pairs, | |
is_pair: bool = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[str] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It | |
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and | |
manages a moving window (with user defined stride) for overflowing tokens. | |
Args: | |
batch_ids_pairs: list of tokenized input ids or input ids pairs | |
""" | |
batch_outputs = {} | |
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): | |
batch_text_or_text_pair, boxes_example = example | |
outputs = self.prepare_for_model( | |
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, | |
batch_text_or_text_pair[1] if is_pair else None, | |
boxes_example, | |
word_labels=word_labels[idx] if word_labels is not None else None, | |
add_special_tokens=add_special_tokens, | |
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=None, # we pad in batch afterward | |
return_attention_mask=False, # we pad in batch afterward | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=None, # We convert the whole batch to tensors at the end | |
prepend_batch_axis=False, | |
verbose=verbose, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
batch_outputs = self.pad( | |
batch_outputs, | |
padding=padding_strategy.value, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) | |
return batch_outputs | |
def encode( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> List[int]: | |
encoded_inputs = self.encode_plus( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
return encoded_inputs["input_ids"] | |
def encode_plus( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, | |
`__call__` should be used instead. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. | |
text_pair (`List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a | |
list of list of strings (words of a batch of examples). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._encode_plus( | |
text=text, | |
boxes=boxes, | |
text_pair=text_pair, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
def _encode_plus( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast. " | |
"More information on available tokenizers at " | |
"https://github.com/huggingface/transformers/pull/2674" | |
) | |
return self.prepare_for_model( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding_strategy.value, | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
prepend_batch_axis=True, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
verbose=verbose, | |
) | |
def prepare_for_model( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
prepend_batch_axis: bool = False, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, | |
truncates sequences if overflowing while taking into account the special tokens and manages a moving window | |
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and | |
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a | |
combination of arguments will raise an error. | |
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into | |
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are | |
labeled with -100, such that they will be ignored by the loss function. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. | |
text_pair (`List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a | |
list of list of strings (words of a batch of examples). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
tokens = [] | |
pair_tokens = [] | |
token_boxes = [] | |
pair_token_boxes = [] | |
labels = [] | |
if text_pair is None: | |
if word_labels is None: | |
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) | |
for word, box in zip(text, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
else: | |
# CASE 2: token classification (training) | |
for word, box, label in zip(text, boxes, word_labels): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
if self.only_label_first_subword: | |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) | |
else: | |
labels.extend([label] * len(word_tokens)) | |
else: | |
# CASE 3: document visual question answering (inference) | |
# text = question | |
# text_pair = words | |
tokens = self.tokenize(text) | |
token_boxes = [self.pad_token_box for _ in range(len(tokens))] | |
for word, box in zip(text_pair, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
pair_tokens.extend(word_tokens) | |
pair_token_boxes.extend([box] * len(word_tokens)) | |
# Create ids + pair_ids | |
ids = self.convert_tokens_to_ids(tokens) | |
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None | |
if ( | |
return_overflowing_tokens | |
and truncation_strategy == TruncationStrategy.LONGEST_FIRST | |
and pair_ids is not None | |
): | |
raise ValueError( | |
"Not possible to return overflowing tokens for pair of sequences with the " | |
"`longest_first`. Please select another truncation strategy than `longest_first`, " | |
"for instance `only_second` or `only_first`." | |
) | |
# Compute the total size of the returned encodings | |
pair = bool(pair_ids is not None) | |
len_ids = len(ids) | |
len_pair_ids = len(pair_ids) if pair else 0 | |
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) | |
# Truncation: Handle max sequence length | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: | |
( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) = self.truncate_sequences( | |
ids, | |
token_boxes, | |
pair_ids=pair_ids, | |
pair_token_boxes=pair_token_boxes, | |
labels=labels, | |
num_tokens_to_remove=total_len - max_length, | |
truncation_strategy=truncation_strategy, | |
stride=stride, | |
) | |
if return_token_type_ids and not add_special_tokens: | |
raise ValueError( | |
"Asking to return token_type_ids while setting add_special_tokens to False " | |
"results in an undefined behavior. Please set add_special_tokens to True or " | |
"set return_token_type_ids to None." | |
) | |
# Load from model defaults | |
if return_token_type_ids is None: | |
return_token_type_ids = "token_type_ids" in self.model_input_names | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
encoded_inputs = {} | |
if return_overflowing_tokens: | |
encoded_inputs["overflowing_tokens"] = overflowing_tokens | |
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes | |
encoded_inputs["overflowing_labels"] = overflowing_labels | |
encoded_inputs["num_truncated_tokens"] = total_len - max_length | |
# Add special tokens | |
if add_special_tokens: | |
sequence = self.build_inputs_with_special_tokens(ids, pair_ids) | |
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) | |
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] | |
if pair_token_boxes: | |
pair_token_boxes = pair_token_boxes + [self.sep_token_box] | |
if labels: | |
labels = [self.pad_token_label] + labels + [self.pad_token_label] | |
else: | |
sequence = ids + pair_ids if pair else ids | |
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) | |
# Build output dictionary | |
encoded_inputs["input_ids"] = sequence | |
encoded_inputs["bbox"] = token_boxes + pair_token_boxes | |
if return_token_type_ids: | |
encoded_inputs["token_type_ids"] = token_type_ids | |
if return_special_tokens_mask: | |
if add_special_tokens: | |
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) | |
else: | |
encoded_inputs["special_tokens_mask"] = [0] * len(sequence) | |
if labels: | |
encoded_inputs["labels"] = labels | |
# Check lengths | |
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) | |
# Padding | |
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: | |
encoded_inputs = self.pad( | |
encoded_inputs, | |
max_length=max_length, | |
padding=padding_strategy.value, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
if return_length: | |
encoded_inputs["length"] = len(encoded_inputs["input_ids"]) | |
batch_outputs = BatchEncoding( | |
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis | |
) | |
return batch_outputs | |
def truncate_sequences( | |
self, | |
ids: List[int], | |
token_boxes: List[List[int]], | |
pair_ids: Optional[List[int]] = None, | |
pair_token_boxes: Optional[List[List[int]]] = None, | |
labels: Optional[List[int]] = None, | |
num_tokens_to_remove: int = 0, | |
truncation_strategy: Union[str, TruncationStrategy] = "longest_first", | |
stride: int = 0, | |
) -> Tuple[List[int], List[int], List[int]]: | |
""" | |
Truncates a sequence pair in-place following the strategy. | |
Args: | |
ids (`List[int]`): | |
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and | |
`convert_tokens_to_ids` methods. | |
token_boxes (`List[List[int]]`): | |
Bounding boxes of the first sequence. | |
pair_ids (`List[int]`, *optional*): | |
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` | |
and `convert_tokens_to_ids` methods. | |
pair_token_boxes (`List[List[int]]`, *optional*): | |
Bounding boxes of the second sequence. | |
labels (`List[int]`, *optional*): | |
Labels of the first sequence (for token classification tasks). | |
num_tokens_to_remove (`int`, *optional*, defaults to 0): | |
Number of tokens to remove using the truncation strategy. | |
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
The strategy to follow for truncation. Can be: | |
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will truncate | |
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a | |
batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater | |
than the model maximum admissible input size). | |
stride (`int`, *optional*, defaults to 0): | |
If set to a positive number, the overflowing tokens returned will contain some tokens from the main | |
sequence returned. The value of this argument defines the number of additional tokens. | |
Returns: | |
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of | |
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair | |
of sequences (or a batch of pairs) is provided. | |
""" | |
if num_tokens_to_remove <= 0: | |
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] | |
if not isinstance(truncation_strategy, TruncationStrategy): | |
truncation_strategy = TruncationStrategy(truncation_strategy) | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( | |
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None | |
): | |
if len(ids) > num_tokens_to_remove: | |
window_len = min(len(ids), stride + num_tokens_to_remove) | |
overflowing_tokens = ids[-window_len:] | |
overflowing_token_boxes = token_boxes[-window_len:] | |
overflowing_labels = labels[-window_len:] | |
ids = ids[:-num_tokens_to_remove] | |
token_boxes = token_boxes[:-num_tokens_to_remove] | |
labels = labels[:-num_tokens_to_remove] | |
else: | |
error_msg = ( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the first sequence has a length {len(ids)}. " | |
) | |
if truncation_strategy == TruncationStrategy.ONLY_FIRST: | |
error_msg = ( | |
error_msg + "Please select another truncation strategy than " | |
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." | |
) | |
logger.error(error_msg) | |
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: | |
logger.warning( | |
"Be aware, overflowing tokens are not returned for the setting you have chosen," | |
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " | |
"truncation strategy. So the returned list will always be empty even if some " | |
"tokens have been removed." | |
) | |
for _ in range(num_tokens_to_remove): | |
if pair_ids is None or len(ids) > len(pair_ids): | |
ids = ids[:-1] | |
token_boxes = token_boxes[:-1] | |
labels = labels[:-1] | |
else: | |
pair_ids = pair_ids[:-1] | |
pair_token_boxes = pair_token_boxes[:-1] | |
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: | |
if len(pair_ids) > num_tokens_to_remove: | |
window_len = min(len(pair_ids), stride + num_tokens_to_remove) | |
overflowing_tokens = pair_ids[-window_len:] | |
overflowing_token_boxes = pair_token_boxes[-window_len:] | |
pair_ids = pair_ids[:-num_tokens_to_remove] | |
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] | |
else: | |
logger.error( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the second sequence has a length {len(pair_ids)}. " | |
f"Please select another truncation strategy than {truncation_strategy}, " | |
"for instance 'longest_first' or 'only_first'." | |
) | |
return ( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) | |
def _pad( | |
self, | |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
max_length: Optional[int] = None, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
) -> dict: | |
""" | |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
Args: | |
encoded_inputs: | |
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
max_length: maximum length of the returned list and optionally padding length (see below). | |
Will truncate by taking into account the special tokens. | |
padding_strategy: PaddingStrategy to use for padding. | |
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
- PaddingStrategy.DO_NOT_PAD: Do not pad | |
The tokenizer padding sides are defined in self.padding_side: | |
- 'left': pads on the left of the sequences | |
- 'right': pads on the right of the sequences | |
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
`>= 7.5` (Volta). | |
return_attention_mask: | |
(optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
""" | |
# Load from model defaults | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = len(required_input) | |
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
# Initialize attention mask if not present. | |
if return_attention_mask and "attention_mask" not in encoded_inputs: | |
encoded_inputs["attention_mask"] = [1] * len(required_input) | |
if needs_to_be_padded: | |
difference = max_length - len(required_input) | |
if self.padding_side == "right": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = ( | |
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference | |
) | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference | |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference | |
elif self.padding_side == "left": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | |
"token_type_ids" | |
] | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] | |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | |
else: | |
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
return encoded_inputs | |
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer | |
class BasicTokenizer: | |
""" | |
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). | |
Args: | |
do_lower_case (`bool`, *optional*, defaults to `True`): | |
Whether or not to lowercase the input when tokenizing. | |
never_split (`Iterable`, *optional*): | |
Collection of tokens which will never be split during tokenization. Only has an effect when | |
`do_basic_tokenize=True` | |
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): | |
Whether or not to tokenize Chinese characters. | |
This should likely be deactivated for Japanese (see this | |
[issue](https://github.com/huggingface/transformers/issues/328)). | |
strip_accents (`bool`, *optional*): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for `lowercase` (as in the original BERT). | |
do_split_on_punc (`bool`, *optional*, defaults to `True`): | |
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture | |
the full context of the words, such as contractions. | |
""" | |
def __init__( | |
self, | |
do_lower_case=True, | |
never_split=None, | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
do_split_on_punc=True, | |
): | |
if never_split is None: | |
never_split = [] | |
self.do_lower_case = do_lower_case | |
self.never_split = set(never_split) | |
self.tokenize_chinese_chars = tokenize_chinese_chars | |
self.strip_accents = strip_accents | |
self.do_split_on_punc = do_split_on_punc | |
def tokenize(self, text, never_split=None): | |
""" | |
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. | |
Args: | |
never_split (`List[str]`, *optional*) | |
Kept for backward compatibility purposes. Now implemented directly at the base class level (see | |
[`PreTrainedTokenizer.tokenize`]) List of token not to split. | |
""" | |
# union() returns a new set by concatenating the two sets. | |
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split | |
text = self._clean_text(text) | |
# This was added on November 1st, 2018 for the multilingual and Chinese | |
# models. This is also applied to the English models now, but it doesn't | |
# matter since the English models were not trained on any Chinese data | |
# and generally don't have any Chinese data in them (there are Chinese | |
# characters in the vocabulary because Wikipedia does have some Chinese | |
# words in the English Wikipedia.). | |
if self.tokenize_chinese_chars: | |
text = self._tokenize_chinese_chars(text) | |
# prevents treating the same character with different unicode codepoints as different characters | |
unicode_normalized_text = unicodedata.normalize("NFC", text) | |
orig_tokens = whitespace_tokenize(unicode_normalized_text) | |
split_tokens = [] | |
for token in orig_tokens: | |
if token not in never_split: | |
if self.do_lower_case: | |
token = token.lower() | |
if self.strip_accents is not False: | |
token = self._run_strip_accents(token) | |
elif self.strip_accents: | |
token = self._run_strip_accents(token) | |
split_tokens.extend(self._run_split_on_punc(token, never_split)) | |
output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
return output_tokens | |
def _run_strip_accents(self, text): | |
"""Strips accents from a piece of text.""" | |
text = unicodedata.normalize("NFD", text) | |
output = [] | |
for char in text: | |
cat = unicodedata.category(char) | |
if cat == "Mn": | |
continue | |
output.append(char) | |
return "".join(output) | |
def _run_split_on_punc(self, text, never_split=None): | |
"""Splits punctuation on a piece of text.""" | |
if not self.do_split_on_punc or (never_split is not None and text in never_split): | |
return [text] | |
chars = list(text) | |
i = 0 | |
start_new_word = True | |
output = [] | |
while i < len(chars): | |
char = chars[i] | |
if _is_punctuation(char): | |
output.append([char]) | |
start_new_word = True | |
else: | |
if start_new_word: | |
output.append([]) | |
start_new_word = False | |
output[-1].append(char) | |
i += 1 | |
return ["".join(x) for x in output] | |
def _tokenize_chinese_chars(self, text): | |
"""Adds whitespace around any CJK character.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if self._is_chinese_char(cp): | |
output.append(" ") | |
output.append(char) | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ( | |
(cp >= 0x4E00 and cp <= 0x9FFF) | |
or (cp >= 0x3400 and cp <= 0x4DBF) # | |
or (cp >= 0x20000 and cp <= 0x2A6DF) # | |
or (cp >= 0x2A700 and cp <= 0x2B73F) # | |
or (cp >= 0x2B740 and cp <= 0x2B81F) # | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) # | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F) # | |
): # | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xFFFD or _is_control(char): | |
continue | |
if _is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer | |
class WordpieceTokenizer: | |
"""Runs WordPiece tokenization.""" | |
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | |
self.vocab = vocab | |
self.unk_token = unk_token | |
self.max_input_chars_per_word = max_input_chars_per_word | |
def tokenize(self, text): | |
""" | |
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform | |
tokenization using the given vocabulary. | |
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. | |
Args: | |
text: A single token or whitespace separated tokens. This should have | |
already been passed through *BasicTokenizer*. | |
Returns: | |
A list of wordpiece tokens. | |
""" | |
output_tokens = [] | |
for token in whitespace_tokenize(text): | |
chars = list(token) | |
if len(chars) > self.max_input_chars_per_word: | |
output_tokens.append(self.unk_token) | |
continue | |
is_bad = False | |
start = 0 | |
sub_tokens = [] | |
while start < len(chars): | |
end = len(chars) | |
cur_substr = None | |
while start < end: | |
substr = "".join(chars[start:end]) | |
if start > 0: | |
substr = "##" + substr | |
if substr in self.vocab: | |
cur_substr = substr | |
break | |
end -= 1 | |
if cur_substr is None: | |
is_bad = True | |
break | |
sub_tokens.append(cur_substr) | |
start = end | |
if is_bad: | |
output_tokens.append(self.unk_token) | |
else: | |
output_tokens.extend(sub_tokens) | |
return output_tokens | |