Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlmv3
/modeling_layoutlmv3.py
# coding=utf-8 | |
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch LayoutLMv3 model.""" | |
import collections | |
import math | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward | |
from ...utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
torch_int, | |
) | |
from .configuration_layoutlmv3 import LayoutLMv3Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "LayoutLMv3Config" | |
LAYOUTLMV3_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`LayoutLMv3Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
LAYOUTLMV3_MODEL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): | |
Bounding boxes of each input sequence tokens. Selected in the range `[0, | |
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) | |
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, | |
y1) represents the position of the lower right corner. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, | |
config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / | |
config.patch_size) * (width / config.patch_size))`. | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
Note that `sequence_length = token_sequence_length + patch_sequence_length + 1` where `1` is for [CLS] | |
token. See `pixel_values` for `patch_sequence_length`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
LAYOUTLMV3_DOWNSTREAM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): | |
Bounding boxes of each input sequence tokens. Selected in the range `[0, | |
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) | |
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, | |
y1) represents the position of the lower right corner. | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Batch of document images. Each image is divided into patches of shape `(num_channels, config.patch_size, | |
config.patch_size)` and the total number of patches (=`patch_sequence_length`) equals to `((height / | |
config.patch_size) * (width / config.patch_size))`. | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class LayoutLMv3PatchEmbeddings(nn.Module): | |
"""LayoutLMv3 image (patch) embeddings. This class also automatically interpolates the position embeddings for varying | |
image sizes.""" | |
def __init__(self, config): | |
super().__init__() | |
image_size = ( | |
config.input_size | |
if isinstance(config.input_size, collections.abc.Iterable) | |
else (config.input_size, config.input_size) | |
) | |
patch_size = ( | |
config.patch_size | |
if isinstance(config.patch_size, collections.abc.Iterable) | |
else (config.patch_size, config.patch_size) | |
) | |
self.patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) | |
self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values, position_embedding=None): | |
embeddings = self.proj(pixel_values) | |
if position_embedding is not None: | |
# interpolate the position embedding to the corresponding size | |
position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1) | |
position_embedding = position_embedding.permute(0, 3, 1, 2) | |
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] | |
position_embedding = F.interpolate(position_embedding, size=(patch_height, patch_width), mode="bicubic") | |
embeddings = embeddings + position_embedding | |
embeddings = embeddings.flatten(2).transpose(1, 2) | |
return embeddings | |
class LayoutLMv3TextEmbeddings(nn.Module): | |
""" | |
LayoutLMv3 text embeddings. Same as `RobertaEmbeddings` but with added spatial (layout) embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False | |
) | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) | |
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size) | |
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) | |
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size) | |
def calculate_spatial_position_embeddings(self, bbox): | |
try: | |
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) | |
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) | |
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) | |
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) | |
except IndexError as e: | |
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e | |
h_position_embeddings = self.h_position_embeddings(torch.clip(bbox[:, :, 3] - bbox[:, :, 1], 0, 1023)) | |
w_position_embeddings = self.w_position_embeddings(torch.clip(bbox[:, :, 2] - bbox[:, :, 0], 0, 1023)) | |
# below is the difference between LayoutLMEmbeddingsV2 (torch.cat) and LayoutLMEmbeddingsV1 (add) | |
spatial_position_embeddings = torch.cat( | |
[ | |
left_position_embeddings, | |
upper_position_embeddings, | |
right_position_embeddings, | |
lower_position_embeddings, | |
h_position_embeddings, | |
w_position_embeddings, | |
], | |
dim=-1, | |
) | |
return spatial_position_embeddings | |
def create_position_ids_from_input_ids(self, input_ids, padding_idx): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding | |
symbols are ignored. This is modified from fairseq's `utils.make_positions`. | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask | |
return incremental_indices.long() + padding_idx | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
def forward( | |
self, | |
input_ids=None, | |
bbox=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( | |
input_ids.device | |
) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
spatial_position_embeddings = self.calculate_spatial_position_embeddings(bbox) | |
embeddings = embeddings + spatial_position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class LayoutLMv3PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LayoutLMv3Config | |
base_model_prefix = "layoutlmv3" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class LayoutLMv3SelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.has_relative_attention_bias = config.has_relative_attention_bias | |
self.has_spatial_attention_bias = config.has_spatial_attention_bias | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def cogview_attention(self, attention_scores, alpha=32): | |
""" | |
https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation | |
(PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores). Seems the new attention_probs | |
will result in a slower speed and a little bias. Can use torch.allclose(standard_attention_probs, | |
cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better. | |
""" | |
scaled_attention_scores = attention_scores / alpha | |
max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) | |
new_attention_scores = (scaled_attention_scores - max_value) * alpha | |
return nn.Softmax(dim=-1)(new_attention_scores) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
# The attention scores QT K/√d could be significantly larger than input elements, and result in overflow. | |
# Changing the computational order into QT(K/√d) alleviates the problem. (https://arxiv.org/pdf/2105.13290.pdf) | |
attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2)) | |
if self.has_relative_attention_bias and self.has_spatial_attention_bias: | |
attention_scores += (rel_pos + rel_2d_pos) / math.sqrt(self.attention_head_size) | |
elif self.has_relative_attention_bias: | |
attention_scores += rel_pos / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
# Use the trick of the CogView paper to stablize training | |
attention_probs = self.cogview_attention(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfOutput | |
class LayoutLMv3SelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Attention with LayoutLMv2->LayoutLMv3 | |
class LayoutLMv3Attention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = LayoutLMv3SelfAttention(config) | |
self.output = LayoutLMv3SelfOutput(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.layoutlmv2.modeling_layoutlmv2.LayoutLMv2Layer with LayoutLMv2->LayoutLMv3 | |
class LayoutLMv3Layer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = LayoutLMv3Attention(config) | |
self.intermediate = LayoutLMv3Intermediate(config) | |
self.output = LayoutLMv3Output(config) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
rel_pos=None, | |
rel_2d_pos=None, | |
): | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class LayoutLMv3Encoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([LayoutLMv3Layer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self.has_relative_attention_bias = config.has_relative_attention_bias | |
self.has_spatial_attention_bias = config.has_spatial_attention_bias | |
if self.has_relative_attention_bias: | |
self.rel_pos_bins = config.rel_pos_bins | |
self.max_rel_pos = config.max_rel_pos | |
self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False) | |
if self.has_spatial_attention_bias: | |
self.max_rel_2d_pos = config.max_rel_2d_pos | |
self.rel_2d_pos_bins = config.rel_2d_pos_bins | |
self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) | |
self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False) | |
def relative_position_bucket(self, relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
ret = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
ret += (relative_position > 0).long() * num_buckets | |
n = torch.abs(relative_position) | |
else: | |
n = torch.max(-relative_position, torch.zeros_like(relative_position)) | |
# now n is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).to(torch.long) | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def _cal_1d_pos_emb(self, position_ids): | |
rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1) | |
rel_pos = self.relative_position_bucket( | |
rel_pos_mat, | |
num_buckets=self.rel_pos_bins, | |
max_distance=self.max_rel_pos, | |
) | |
# Since this is a simple indexing operation that is independent of the input, | |
# no need to track gradients for this operation | |
# | |
# Without this no_grad context, training speed slows down significantly | |
with torch.no_grad(): | |
rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2) | |
rel_pos = rel_pos.contiguous() | |
return rel_pos | |
def _cal_2d_pos_emb(self, bbox): | |
position_coord_x = bbox[:, :, 0] | |
position_coord_y = bbox[:, :, 3] | |
rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1) | |
rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1) | |
rel_pos_x = self.relative_position_bucket( | |
rel_pos_x_2d_mat, | |
num_buckets=self.rel_2d_pos_bins, | |
max_distance=self.max_rel_2d_pos, | |
) | |
rel_pos_y = self.relative_position_bucket( | |
rel_pos_y_2d_mat, | |
num_buckets=self.rel_2d_pos_bins, | |
max_distance=self.max_rel_2d_pos, | |
) | |
# Since this is a simple indexing operation that is independent of the input, | |
# no need to track gradients for this operation | |
# | |
# Without this no_grad context, training speed slows down significantly | |
with torch.no_grad(): | |
rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2) | |
rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2) | |
rel_pos_x = rel_pos_x.contiguous() | |
rel_pos_y = rel_pos_y.contiguous() | |
rel_2d_pos = rel_pos_x + rel_pos_y | |
return rel_2d_pos | |
def forward( | |
self, | |
hidden_states, | |
bbox=None, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
position_ids=None, | |
patch_height=None, | |
patch_width=None, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
rel_pos = self._cal_1d_pos_emb(position_ids) if self.has_relative_attention_bias else None | |
rel_2d_pos = self._cal_2d_pos_emb(bbox) if self.has_spatial_attention_bias else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
rel_pos, | |
rel_2d_pos, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
rel_pos=rel_pos, | |
rel_2d_pos=rel_2d_pos, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaIntermediate | |
class LayoutLMv3Intermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaOutput | |
class LayoutLMv3Output(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LayoutLMv3Model(LayoutLMv3PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
if config.text_embed: | |
self.embeddings = LayoutLMv3TextEmbeddings(config) | |
if config.visual_embed: | |
# use the default pre-training parameters for fine-tuning (e.g., input_size) | |
# when the input_size is larger in fine-tuning, we will interpolate the position embeddings in forward | |
self.patch_embed = LayoutLMv3PatchEmbeddings(config) | |
size = int(config.input_size / config.patch_size) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, size * size + 1, config.hidden_size)) | |
self.pos_drop = nn.Dropout(p=0.0) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: | |
self.init_visual_bbox(image_size=(size, size)) | |
self.norm = nn.LayerNorm(config.hidden_size, eps=1e-6) | |
self.encoder = LayoutLMv3Encoder(config) | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def init_visual_bbox(self, image_size=(14, 14), max_len=1000): | |
""" | |
Create the bounding boxes for the visual (patch) tokens. | |
""" | |
visual_bbox_x = torch.div( | |
torch.arange(0, max_len * (image_size[1] + 1), max_len), image_size[1], rounding_mode="trunc" | |
) | |
visual_bbox_y = torch.div( | |
torch.arange(0, max_len * (image_size[0] + 1), max_len), image_size[0], rounding_mode="trunc" | |
) | |
visual_bbox = torch.stack( | |
[ | |
visual_bbox_x[:-1].repeat(image_size[0], 1), | |
visual_bbox_y[:-1].repeat(image_size[1], 1).transpose(0, 1), | |
visual_bbox_x[1:].repeat(image_size[0], 1), | |
visual_bbox_y[1:].repeat(image_size[1], 1).transpose(0, 1), | |
], | |
dim=-1, | |
).view(-1, 4) | |
cls_token_box = torch.tensor([[0 + 1, 0 + 1, max_len - 1, max_len - 1]]) | |
self.visual_bbox = torch.cat([cls_token_box, visual_bbox], dim=0) | |
def calculate_visual_bbox(self, device, dtype, batch_size): | |
visual_bbox = self.visual_bbox.repeat(batch_size, 1, 1) | |
visual_bbox = visual_bbox.to(device).type(dtype) | |
return visual_bbox | |
def forward_image(self, pixel_values): | |
embeddings = self.patch_embed(pixel_values) | |
# add [CLS] token | |
batch_size, seq_len, _ = embeddings.size() | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
# add position embeddings | |
if self.pos_embed is not None: | |
embeddings = embeddings + self.pos_embed | |
embeddings = self.pos_drop(embeddings) | |
embeddings = self.norm(embeddings) | |
return embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, AutoModel | |
>>> from datasets import load_dataset | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) | |
>>> model = AutoModel.from_pretrained("microsoft/layoutlmv3-base") | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
batch_size, seq_length = input_shape | |
device = input_ids.device | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size, seq_length = input_shape | |
device = inputs_embeds.device | |
elif pixel_values is not None: | |
batch_size = len(pixel_values) | |
device = pixel_values.device | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds or pixel_values") | |
if input_ids is not None or inputs_embeds is not None: | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
if bbox is None: | |
bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
bbox=bbox, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
final_bbox = final_position_ids = None | |
patch_height = patch_width = None | |
if pixel_values is not None: | |
patch_height, patch_width = ( | |
torch_int(pixel_values.shape[2] / self.config.patch_size), | |
torch_int(pixel_values.shape[3] / self.config.patch_size), | |
) | |
visual_embeddings = self.forward_image(pixel_values) | |
visual_attention_mask = torch.ones( | |
(batch_size, visual_embeddings.shape[1]), dtype=torch.long, device=device | |
) | |
if attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1) | |
else: | |
attention_mask = visual_attention_mask | |
if self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: | |
if self.config.has_spatial_attention_bias: | |
visual_bbox = self.calculate_visual_bbox(device, dtype=torch.long, batch_size=batch_size) | |
if bbox is not None: | |
final_bbox = torch.cat([bbox, visual_bbox], dim=1) | |
else: | |
final_bbox = visual_bbox | |
visual_position_ids = torch.arange( | |
0, visual_embeddings.shape[1], dtype=torch.long, device=device | |
).repeat(batch_size, 1) | |
if input_ids is not None or inputs_embeds is not None: | |
position_ids = torch.arange(0, input_shape[1], device=device).unsqueeze(0) | |
position_ids = position_ids.expand(input_shape) | |
final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1) | |
else: | |
final_position_ids = visual_position_ids | |
if input_ids is not None or inputs_embeds is not None: | |
embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1) | |
else: | |
embedding_output = visual_embeddings | |
embedding_output = self.LayerNorm(embedding_output) | |
embedding_output = self.dropout(embedding_output) | |
elif self.config.has_relative_attention_bias or self.config.has_spatial_attention_bias: | |
if self.config.has_spatial_attention_bias: | |
final_bbox = bbox | |
if self.config.has_relative_attention_bias: | |
position_ids = self.embeddings.position_ids[:, : input_shape[1]] | |
position_ids = position_ids.expand_as(input_ids) | |
final_position_ids = position_ids | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( | |
attention_mask, None, device, dtype=embedding_output.dtype | |
) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
bbox=final_bbox, | |
position_ids=final_position_ids, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
patch_height=patch_height, | |
patch_width=patch_width, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class LayoutLMv3ClassificationHead(nn.Module): | |
""" | |
Head for sentence-level classification tasks. Reference: RobertaClassificationHead | |
""" | |
def __init__(self, config, pool_feature=False): | |
super().__init__() | |
self.pool_feature = pool_feature | |
if pool_feature: | |
self.dense = nn.Linear(config.hidden_size * 3, config.hidden_size) | |
else: | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, x): | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class LayoutLMv3ForTokenClassification(LayoutLMv3PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.layoutlmv3 = LayoutLMv3Model(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
if config.num_labels < 10: | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
else: | |
self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
pixel_values: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, AutoModelForTokenClassification | |
>>> from datasets import load_dataset | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) | |
>>> model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base", num_labels=7) | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> word_labels = example["ner_tags"] | |
>>> encoding = processor(image, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.layoutlmv3( | |
input_ids, | |
bbox=bbox, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
pixel_values=pixel_values, | |
) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# only take the text part of the output representations | |
sequence_output = outputs[0][:, :seq_length] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LayoutLMv3ForQuestionAnswering(LayoutLMv3PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.layoutlmv3 = LayoutLMv3Model(config) | |
self.qa_outputs = LayoutLMv3ClassificationHead(config, pool_feature=False) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, AutoModelForQuestionAnswering | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) | |
>>> model = AutoModelForQuestionAnswering.from_pretrained("microsoft/layoutlmv3-base") | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> question = "what's his name?" | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> encoding = processor(image, question, words, boxes=boxes, return_tensors="pt") | |
>>> start_positions = torch.tensor([1]) | |
>>> end_positions = torch.tensor([3]) | |
>>> outputs = model(**encoding, start_positions=start_positions, end_positions=end_positions) | |
>>> loss = outputs.loss | |
>>> start_scores = outputs.start_logits | |
>>> end_scores = outputs.end_logits | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.layoutlmv3( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LayoutLMv3ForSequenceClassification(LayoutLMv3PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.layoutlmv3 = LayoutLMv3Model(config) | |
self.classifier = LayoutLMv3ClassificationHead(config, pool_feature=False) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
bbox: Optional[torch.LongTensor] = None, | |
pixel_values: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, AutoModelForSequenceClassification | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) | |
>>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/layoutlmv3-base") | |
>>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train", trust_remote_code=True) | |
>>> example = dataset[0] | |
>>> image = example["image"] | |
>>> words = example["tokens"] | |
>>> boxes = example["bboxes"] | |
>>> encoding = processor(image, words, boxes=boxes, return_tensors="pt") | |
>>> sequence_label = torch.tensor([1]) | |
>>> outputs = model(**encoding, labels=sequence_label) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.layoutlmv3( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
) | |
sequence_output = outputs[0][:, 0, :] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |