Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/layoutlmv3
/tokenization_layoutlmv3.py
# coding=utf-8 | |
# Copyright The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization class for LayoutLMv3. Same as LayoutLMv2, but RoBERTa-like BPE tokenization instead of WordPiece.""" | |
import json | |
import os | |
from functools import lru_cache | |
from typing import Dict, List, Optional, Tuple, Union | |
import regex as re | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...tokenization_utils_base import ( | |
BatchEncoding, | |
EncodedInput, | |
PreTokenizedInput, | |
TextInput, | |
TextInputPair, | |
TruncationStrategy, | |
) | |
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"merges_file": "merges.txt", | |
} | |
LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING = r""" | |
add_special_tokens (`bool`, *optional*, defaults to `True`): | |
Whether or not to encode the sequences with the special tokens relative to their model. | |
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Activates and controls padding. Accepts the following values: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
Activates and controls truncation. Accepts the following values: | |
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or | |
to the maximum acceptable input length for the model if that argument is not provided. This will | |
truncate token by token, removing a token from the longest sequence in the pair if a pair of | |
sequences (or a batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths | |
greater than the model maximum admissible input size). | |
max_length (`int`, *optional*): | |
Controls the maximum length to use by one of the truncation/padding parameters. | |
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length | |
is required by one of the truncation/padding parameters. If the model has no specific maximum input | |
length (like XLNet) truncation/padding to a maximum length will be deactivated. | |
stride (`int`, *optional*, defaults to 0): | |
If set to a number along with `max_length`, the overflowing tokens returned when | |
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence | |
returned to provide some overlap between truncated and overflowing sequences. The value of this | |
argument defines the number of overlapping tokens. | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable | |
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). | |
return_tensors (`str` or [`~file_utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
""" | |
LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" | |
add_special_tokens (`bool`, *optional*, defaults to `True`): | |
Whether or not to encode the sequences with the special tokens relative to their model. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Activates and controls padding. Accepts the following values: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
Activates and controls truncation. Accepts the following values: | |
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or | |
to the maximum acceptable input length for the model if that argument is not provided. This will | |
truncate token by token, removing a token from the longest sequence in the pair if a pair of | |
sequences (or a batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths | |
greater than the model maximum admissible input size). | |
max_length (`int`, *optional*): | |
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to | |
`None`, this will use the predefined model maximum length if a maximum length is required by one of the | |
truncation/padding parameters. If the model has no specific maximum input length (like XLNet) | |
truncation/padding to a maximum length will be deactivated. | |
stride (`int`, *optional*, defaults to 0): | |
If set to a number along with `max_length`, the overflowing tokens returned when | |
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence | |
returned to provide some overlap between truncated and overflowing sequences. The value of this | |
argument defines the number of overlapping tokens. | |
pad_to_multiple_of (`int`, *optional*): | |
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable | |
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors instead of list of python integers. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return Numpy `np.ndarray` objects. | |
""" | |
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control | |
characters the bpe code barfs on. | |
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab | |
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for | |
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup | |
tables between utf-8 bytes and unicode strings. | |
""" | |
bs = ( | |
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8 + n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
# Copied from transformers.models.roberta.tokenization_roberta.get_pairs | |
def get_pairs(word): | |
""" | |
Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class LayoutLMv3Tokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a LayoutLMv3 tokenizer. Based on [`RoBERTatokenizer`] (Byte Pair Encoding or BPE). | |
[`LayoutLMv3Tokenizer`] can be used to turn words, word-level bounding boxes and optional word labels to | |
token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and optional `labels` (for token | |
classification). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
[`LayoutLMv3Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the | |
word-level bounding boxes into token-level bounding boxes. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
merges_file (`str`): | |
Path to the merges file. | |
errors (`str`, *optional*, defaults to `"replace"`): | |
Paradigm to follow when decoding bytes to UTF-8. See | |
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. | |
bos_token (`str`, *optional*, defaults to `"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the beginning of | |
sequence. The token used is the `cls_token`. | |
</Tip> | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
<Tip> | |
When building a sequence using special tokens, this is not the token that is used for the end of sequence. | |
The token used is the `sep_token`. | |
</Tip> | |
sep_token (`str`, *optional*, defaults to `"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
cls_token (`str`, *optional*, defaults to `"<s>"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
mask_token (`str`, *optional*, defaults to `"<mask>"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
add_prefix_space (`bool`, *optional*, defaults to `True`): | |
Whether or not to add an initial space to the input. This allows to treat the leading word just as any | |
other word. (RoBERTa tokenizer detect beginning of words by the preceding space). | |
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): | |
The bounding box to use for the special [CLS] token. | |
sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): | |
The bounding box to use for the special [SEP] token. | |
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): | |
The bounding box to use for the special [PAD] token. | |
pad_token_label (`int`, *optional*, defaults to -100): | |
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's | |
CrossEntropyLoss. | |
only_label_first_subword (`bool`, *optional*, defaults to `True`): | |
Whether or not to only label the first subword, in case word labels are provided. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask", "bbox"] | |
def __init__( | |
self, | |
vocab_file, | |
merges_file, | |
errors="replace", | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
add_prefix_space=True, | |
cls_token_box=[0, 0, 0, 0], | |
sep_token_box=[0, 0, 0, 0], | |
pad_token_box=[0, 0, 0, 0], | |
pad_token_label=-100, | |
only_label_first_subword=True, | |
**kwargs, | |
): | |
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token | |
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token | |
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token | |
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token | |
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
# Mask token behave like a normal word, i.e. include the space before it | |
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token | |
with open(vocab_file, encoding="utf-8") as vocab_handle: | |
self.encoder = json.load(vocab_handle) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.errors = errors # how to handle errors in decoding | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
with open(merges_file, encoding="utf-8") as merges_handle: | |
bpe_merges = merges_handle.read().split("\n")[1:-1] | |
bpe_merges = [tuple(merge.split()) for merge in bpe_merges] | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
self.add_prefix_space = add_prefix_space | |
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
# additional properties | |
self.cls_token_box = cls_token_box | |
self.sep_token_box = sep_token_box | |
self.pad_token_box = pad_token_box | |
self.pad_token_label = pad_token_label | |
self.only_label_first_subword = only_label_first_subword | |
super().__init__( | |
errors=errors, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
add_prefix_space=add_prefix_space, | |
cls_token_box=cls_token_box, | |
sep_token_box=sep_token_box, | |
pad_token_box=pad_token_box, | |
pad_token_label=pad_token_label, | |
only_label_first_subword=only_label_first_subword, | |
**kwargs, | |
) | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size | |
def vocab_size(self): | |
return len(self.encoder) | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab | |
def get_vocab(self): | |
vocab = dict(self.encoder).copy() | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
else: | |
new_word.extend(word[i:j]) | |
i = j | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = " ".join(word) | |
self.cache[token] = word | |
return word | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize | |
def _tokenize(self, text): | |
"""Tokenize a string.""" | |
bpe_tokens = [] | |
for token in re.findall(self.pat, text): | |
token = "".join( | |
self.byte_encoder[b] for b in token.encode("utf-8") | |
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) | |
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) | |
return bpe_tokens | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.decoder.get(index) | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
text = "".join(tokens) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) | |
return text | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.save_vocabulary | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
merge_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
) | |
with open(vocab_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
index = 0 | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
writer.write("#version: 0.2\n") | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!" | |
) | |
index = token_index | |
writer.write(" ".join(bpe_tokens) + "\n") | |
index += 1 | |
return vocab_file, merge_file | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A RoBERTa sequence has the following format: | |
- single sequence: `<s> X </s>` | |
- pair of sequences: `<s> A </s></s> B </s>` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
cls = [self.cls_token_id] | |
sep = [self.sep_token_id] | |
return cls + token_ids_0 + sep + sep + token_ids_1 + sep | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
if token_ids_1 is None: | |
return [1] + ([0] * len(token_ids_0)) + [1] | |
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | |
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not | |
make use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of zeros. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): | |
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) | |
# If the text starts with a token that should not be split, no space is added before the text in any case. | |
# It's necessary to match the fast tokenization | |
if ( | |
(is_split_into_words or add_prefix_space) | |
and (len(text) > 0 and not text[0].isspace()) | |
and sum([text.startswith(no_split_token) for no_split_token in self.added_tokens_encoder]) == 0 | |
): | |
text = " " + text | |
return (text, kwargs) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.__call__ | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], | |
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, | |
boxes: Union[List[List[int]], List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of | |
sequences with word-level normalized bounding boxes and optional labels. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings | |
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of | |
words). | |
text_pair (`List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings | |
(pretokenized string). | |
boxes (`List[List[int]]`, `List[List[List[int]]]`): | |
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. | |
word_labels (`List[int]`, `List[List[int]]`, *optional*): | |
Word-level integer labels (for token classification tasks such as FUNSD, CORD). | |
""" | |
# Input type checking for clearer error | |
def _is_valid_text_input(t): | |
if isinstance(t, str): | |
# Strings are fine | |
return True | |
elif isinstance(t, (list, tuple)): | |
# List are fine as long as they are... | |
if len(t) == 0: | |
# ... empty | |
return True | |
elif isinstance(t[0], str): | |
# ... list of strings | |
return True | |
elif isinstance(t[0], (list, tuple)): | |
# ... list with an empty list or with a list of strings | |
return len(t[0]) == 0 or isinstance(t[0][0], str) | |
else: | |
return False | |
else: | |
return False | |
if text_pair is not None: | |
# in case text + text_pair are provided, text = questions, text_pair = words | |
if not _is_valid_text_input(text): | |
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") | |
if not isinstance(text_pair, (list, tuple)): | |
raise ValueError( | |
"Words must be of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
else: | |
# in case only text is provided => must be words | |
if not isinstance(text, (list, tuple)): | |
raise ValueError( | |
"Words must be of type `List[str]` (single pretokenized example), " | |
"or `List[List[str]]` (batch of pretokenized examples)." | |
) | |
if text_pair is not None: | |
is_batched = isinstance(text, (list, tuple)) | |
else: | |
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) | |
words = text if text_pair is None else text_pair | |
if boxes is None: | |
raise ValueError("You must provide corresponding bounding boxes") | |
if is_batched: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide words and boxes for an equal amount of examples") | |
for words_example, boxes_example in zip(words, boxes): | |
if len(words_example) != len(boxes_example): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
else: | |
if len(words) != len(boxes): | |
raise ValueError("You must provide as many words as there are bounding boxes") | |
if is_batched: | |
if text_pair is not None and len(text) != len(text_pair): | |
raise ValueError( | |
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" | |
f" {len(text_pair)}." | |
) | |
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text | |
is_pair = bool(text_pair is not None) | |
return self.batch_encode_plus( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
else: | |
return self.encode_plus( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.batch_encode_plus | |
def batch_encode_plus( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[Union[List[int], List[List[int]]]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._batch_encode_plus( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_encode_plus | |
def _batch_encode_plus( | |
self, | |
batch_text_or_text_pairs: Union[ | |
List[TextInput], | |
List[TextInputPair], | |
List[PreTokenizedInput], | |
], | |
is_pair: bool = None, | |
boxes: Optional[List[List[List[int]]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast." | |
) | |
batch_outputs = self._batch_prepare_for_model( | |
batch_text_or_text_pairs=batch_text_or_text_pairs, | |
is_pair=is_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=return_tensors, | |
verbose=verbose, | |
) | |
return BatchEncoding(batch_outputs) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._batch_prepare_for_model | |
def _batch_prepare_for_model( | |
self, | |
batch_text_or_text_pairs, | |
is_pair: bool = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[List[int]]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[str] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It | |
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and | |
manages a moving window (with user defined stride) for overflowing tokens. | |
Args: | |
batch_ids_pairs: list of tokenized input ids or input ids pairs | |
""" | |
batch_outputs = {} | |
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): | |
batch_text_or_text_pair, boxes_example = example | |
outputs = self.prepare_for_model( | |
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, | |
batch_text_or_text_pair[1] if is_pair else None, | |
boxes_example, | |
word_labels=word_labels[idx] if word_labels is not None else None, | |
add_special_tokens=add_special_tokens, | |
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=None, # we pad in batch afterward | |
return_attention_mask=False, # we pad in batch afterward | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
return_tensors=None, # We convert the whole batch to tensors at the end | |
prepend_batch_axis=False, | |
verbose=verbose, | |
) | |
for key, value in outputs.items(): | |
if key not in batch_outputs: | |
batch_outputs[key] = [] | |
batch_outputs[key].append(value) | |
batch_outputs = self.pad( | |
batch_outputs, | |
padding=padding_strategy.value, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) | |
return batch_outputs | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode | |
def encode( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> List[int]: | |
encoded_inputs = self.encode_plus( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
return encoded_inputs["input_ids"] | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.encode_plus | |
def encode_plus( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, | |
`__call__` should be used instead. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. | |
text_pair (`List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a | |
list of list of strings (words of a batch of examples). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
return self._encode_plus( | |
text=text, | |
boxes=boxes, | |
text_pair=text_pair, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding_strategy=padding_strategy, | |
truncation_strategy=truncation_strategy, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
return_token_type_ids=return_token_type_ids, | |
return_attention_mask=return_attention_mask, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_offsets_mapping=return_offsets_mapping, | |
return_length=return_length, | |
verbose=verbose, | |
**kwargs, | |
) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._encode_plus | |
def _encode_plus( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
**kwargs, | |
) -> BatchEncoding: | |
if return_offsets_mapping: | |
raise NotImplementedError( | |
"return_offset_mapping is not available when using Python tokenizers. " | |
"To use this feature, change your tokenizer to one deriving from " | |
"transformers.PreTrainedTokenizerFast. " | |
"More information on available tokenizers at " | |
"https://github.com/huggingface/transformers/pull/2674" | |
) | |
return self.prepare_for_model( | |
text=text, | |
text_pair=text_pair, | |
boxes=boxes, | |
word_labels=word_labels, | |
add_special_tokens=add_special_tokens, | |
padding=padding_strategy.value, | |
truncation=truncation_strategy.value, | |
max_length=max_length, | |
stride=stride, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_tensors=return_tensors, | |
prepend_batch_axis=True, | |
return_attention_mask=return_attention_mask, | |
return_token_type_ids=return_token_type_ids, | |
return_overflowing_tokens=return_overflowing_tokens, | |
return_special_tokens_mask=return_special_tokens_mask, | |
return_length=return_length, | |
verbose=verbose, | |
) | |
def prepare_for_model( | |
self, | |
text: Union[TextInput, PreTokenizedInput], | |
text_pair: Optional[PreTokenizedInput] = None, | |
boxes: Optional[List[List[int]]] = None, | |
word_labels: Optional[List[int]] = None, | |
add_special_tokens: bool = True, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length: Optional[int] = None, | |
stride: int = 0, | |
pad_to_multiple_of: Optional[int] = None, | |
return_tensors: Optional[Union[str, TensorType]] = None, | |
return_token_type_ids: Optional[bool] = None, | |
return_attention_mask: Optional[bool] = None, | |
return_overflowing_tokens: bool = False, | |
return_special_tokens_mask: bool = False, | |
return_offsets_mapping: bool = False, | |
return_length: bool = False, | |
verbose: bool = True, | |
prepend_batch_axis: bool = False, | |
**kwargs, | |
) -> BatchEncoding: | |
""" | |
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, | |
truncates sequences if overflowing while taking into account the special tokens and manages a moving window | |
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and | |
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a | |
combination of arguments will raise an error. | |
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into | |
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are | |
labeled with -100, such that they will be ignored by the loss function. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. | |
text_pair (`List[str]` or `List[int]`, *optional*): | |
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a | |
list of list of strings (words of a batch of examples). | |
""" | |
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length' | |
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( | |
padding=padding, | |
truncation=truncation, | |
max_length=max_length, | |
pad_to_multiple_of=pad_to_multiple_of, | |
verbose=verbose, | |
**kwargs, | |
) | |
tokens = [] | |
pair_tokens = [] | |
token_boxes = [] | |
pair_token_boxes = [] | |
labels = [] | |
if text_pair is None: | |
if word_labels is None: | |
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) | |
for word, box in zip(text, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
else: | |
# CASE 2: token classification (training) | |
for word, box, label in zip(text, boxes, word_labels): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
tokens.extend(word_tokens) | |
token_boxes.extend([box] * len(word_tokens)) | |
if self.only_label_first_subword: | |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) | |
else: | |
labels.extend([label] * len(word_tokens)) | |
else: | |
# CASE 3: document visual question answering (inference) | |
# text = question | |
# text_pair = words | |
tokens = self.tokenize(text) | |
token_boxes = [self.pad_token_box for _ in range(len(tokens))] | |
for word, box in zip(text_pair, boxes): | |
if len(word) < 1: # skip empty words | |
continue | |
word_tokens = self.tokenize(word) | |
pair_tokens.extend(word_tokens) | |
pair_token_boxes.extend([box] * len(word_tokens)) | |
# Create ids + pair_ids | |
ids = self.convert_tokens_to_ids(tokens) | |
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None | |
if ( | |
return_overflowing_tokens | |
and truncation_strategy == TruncationStrategy.LONGEST_FIRST | |
and pair_ids is not None | |
): | |
raise ValueError( | |
"Not possible to return overflowing tokens for pair of sequences with the " | |
"`longest_first`. Please select another truncation strategy than `longest_first`, " | |
"for instance `only_second` or `only_first`." | |
) | |
# Compute the total size of the returned encodings | |
pair = bool(pair_ids is not None) | |
len_ids = len(ids) | |
len_pair_ids = len(pair_ids) if pair else 0 | |
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) | |
# Truncation: Handle max sequence length | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: | |
( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) = self.truncate_sequences( | |
ids, | |
token_boxes, | |
pair_ids=pair_ids, | |
pair_token_boxes=pair_token_boxes, | |
labels=labels, | |
num_tokens_to_remove=total_len - max_length, | |
truncation_strategy=truncation_strategy, | |
stride=stride, | |
) | |
if return_token_type_ids and not add_special_tokens: | |
raise ValueError( | |
"Asking to return token_type_ids while setting add_special_tokens to False " | |
"results in an undefined behavior. Please set add_special_tokens to True or " | |
"set return_token_type_ids to None." | |
) | |
# Load from model defaults | |
if return_token_type_ids is None: | |
return_token_type_ids = "token_type_ids" in self.model_input_names | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
encoded_inputs = {} | |
if return_overflowing_tokens: | |
encoded_inputs["overflowing_tokens"] = overflowing_tokens | |
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes | |
encoded_inputs["overflowing_labels"] = overflowing_labels | |
encoded_inputs["num_truncated_tokens"] = total_len - max_length | |
# Add special tokens | |
if add_special_tokens: | |
sequence = self.build_inputs_with_special_tokens(ids, pair_ids) | |
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) | |
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] | |
if pair_token_boxes: | |
pair_token_boxes = [self.sep_token_box] + pair_token_boxes + [self.sep_token_box] | |
token_boxes = token_boxes + pair_token_boxes if pair else token_boxes | |
if labels: | |
labels = [self.pad_token_label] + labels + [self.pad_token_label] | |
else: | |
sequence = ids + pair_ids if pair else ids | |
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) | |
token_boxes = token_boxes + pair_token_boxes if pair else token_boxes | |
# Build output dictionary | |
encoded_inputs["input_ids"] = sequence | |
encoded_inputs["bbox"] = token_boxes | |
if return_token_type_ids: | |
encoded_inputs["token_type_ids"] = token_type_ids | |
if return_special_tokens_mask: | |
if add_special_tokens: | |
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) | |
else: | |
encoded_inputs["special_tokens_mask"] = [0] * len(sequence) | |
if labels: | |
encoded_inputs["labels"] = labels | |
# Check lengths | |
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) | |
# Padding | |
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: | |
encoded_inputs = self.pad( | |
encoded_inputs, | |
max_length=max_length, | |
padding=padding_strategy.value, | |
pad_to_multiple_of=pad_to_multiple_of, | |
return_attention_mask=return_attention_mask, | |
) | |
if return_length: | |
encoded_inputs["length"] = len(encoded_inputs["input_ids"]) | |
batch_outputs = BatchEncoding( | |
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis | |
) | |
return batch_outputs | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer.truncate_sequences | |
def truncate_sequences( | |
self, | |
ids: List[int], | |
token_boxes: List[List[int]], | |
pair_ids: Optional[List[int]] = None, | |
pair_token_boxes: Optional[List[List[int]]] = None, | |
labels: Optional[List[int]] = None, | |
num_tokens_to_remove: int = 0, | |
truncation_strategy: Union[str, TruncationStrategy] = "longest_first", | |
stride: int = 0, | |
) -> Tuple[List[int], List[int], List[int]]: | |
""" | |
Truncates a sequence pair in-place following the strategy. | |
Args: | |
ids (`List[int]`): | |
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and | |
`convert_tokens_to_ids` methods. | |
token_boxes (`List[List[int]]`): | |
Bounding boxes of the first sequence. | |
pair_ids (`List[int]`, *optional*): | |
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` | |
and `convert_tokens_to_ids` methods. | |
pair_token_boxes (`List[List[int]]`, *optional*): | |
Bounding boxes of the second sequence. | |
labels (`List[int]`, *optional*): | |
Labels of the first sequence (for token classification tasks). | |
num_tokens_to_remove (`int`, *optional*, defaults to 0): | |
Number of tokens to remove using the truncation strategy. | |
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): | |
The strategy to follow for truncation. Can be: | |
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will truncate | |
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a | |
batch of pairs) is provided. | |
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the | |
maximum acceptable input length for the model if that argument is not provided. This will only | |
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. | |
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater | |
than the model maximum admissible input size). | |
stride (`int`, *optional*, defaults to 0): | |
If set to a positive number, the overflowing tokens returned will contain some tokens from the main | |
sequence returned. The value of this argument defines the number of additional tokens. | |
Returns: | |
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of | |
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair | |
of sequences (or a batch of pairs) is provided. | |
""" | |
if num_tokens_to_remove <= 0: | |
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] | |
if not isinstance(truncation_strategy, TruncationStrategy): | |
truncation_strategy = TruncationStrategy(truncation_strategy) | |
overflowing_tokens = [] | |
overflowing_token_boxes = [] | |
overflowing_labels = [] | |
if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( | |
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None | |
): | |
if len(ids) > num_tokens_to_remove: | |
window_len = min(len(ids), stride + num_tokens_to_remove) | |
overflowing_tokens = ids[-window_len:] | |
overflowing_token_boxes = token_boxes[-window_len:] | |
overflowing_labels = labels[-window_len:] | |
ids = ids[:-num_tokens_to_remove] | |
token_boxes = token_boxes[:-num_tokens_to_remove] | |
labels = labels[:-num_tokens_to_remove] | |
else: | |
error_msg = ( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the first sequence has a length {len(ids)}. " | |
) | |
if truncation_strategy == TruncationStrategy.ONLY_FIRST: | |
error_msg = ( | |
error_msg + "Please select another truncation strategy than " | |
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." | |
) | |
logger.error(error_msg) | |
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: | |
logger.warning( | |
"Be aware, overflowing tokens are not returned for the setting you have chosen," | |
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " | |
"truncation strategy. So the returned list will always be empty even if some " | |
"tokens have been removed." | |
) | |
for _ in range(num_tokens_to_remove): | |
if pair_ids is None or len(ids) > len(pair_ids): | |
ids = ids[:-1] | |
token_boxes = token_boxes[:-1] | |
labels = labels[:-1] | |
else: | |
pair_ids = pair_ids[:-1] | |
pair_token_boxes = pair_token_boxes[:-1] | |
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: | |
if len(pair_ids) > num_tokens_to_remove: | |
window_len = min(len(pair_ids), stride + num_tokens_to_remove) | |
overflowing_tokens = pair_ids[-window_len:] | |
overflowing_token_boxes = pair_token_boxes[-window_len:] | |
pair_ids = pair_ids[:-num_tokens_to_remove] | |
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] | |
else: | |
logger.error( | |
f"We need to remove {num_tokens_to_remove} to truncate the input " | |
f"but the second sequence has a length {len(pair_ids)}. " | |
f"Please select another truncation strategy than {truncation_strategy}, " | |
"for instance 'longest_first' or 'only_first'." | |
) | |
return ( | |
ids, | |
token_boxes, | |
pair_ids, | |
pair_token_boxes, | |
labels, | |
overflowing_tokens, | |
overflowing_token_boxes, | |
overflowing_labels, | |
) | |
# Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2.LayoutLMv2Tokenizer._pad | |
def _pad( | |
self, | |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | |
max_length: Optional[int] = None, | |
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | |
pad_to_multiple_of: Optional[int] = None, | |
return_attention_mask: Optional[bool] = None, | |
) -> dict: | |
""" | |
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | |
Args: | |
encoded_inputs: | |
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | |
max_length: maximum length of the returned list and optionally padding length (see below). | |
Will truncate by taking into account the special tokens. | |
padding_strategy: PaddingStrategy to use for padding. | |
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | |
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | |
- PaddingStrategy.DO_NOT_PAD: Do not pad | |
The tokenizer padding sides are defined in self.padding_side: | |
- 'left': pads on the left of the sequences | |
- 'right': pads on the right of the sequences | |
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | |
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | |
`>= 7.5` (Volta). | |
return_attention_mask: | |
(optional) Set to False to avoid returning attention mask (default: set to model specifics) | |
""" | |
# Load from model defaults | |
if return_attention_mask is None: | |
return_attention_mask = "attention_mask" in self.model_input_names | |
required_input = encoded_inputs[self.model_input_names[0]] | |
if padding_strategy == PaddingStrategy.LONGEST: | |
max_length = len(required_input) | |
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | |
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | |
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | |
# Initialize attention mask if not present. | |
if return_attention_mask and "attention_mask" not in encoded_inputs: | |
encoded_inputs["attention_mask"] = [1] * len(required_input) | |
if needs_to_be_padded: | |
difference = max_length - len(required_input) | |
if self.padding_side == "right": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = ( | |
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference | |
) | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference | |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference | |
elif self.padding_side == "left": | |
if return_attention_mask: | |
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | |
if "token_type_ids" in encoded_inputs: | |
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ | |
"token_type_ids" | |
] | |
if "bbox" in encoded_inputs: | |
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] | |
if "labels" in encoded_inputs: | |
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] | |
if "special_tokens_mask" in encoded_inputs: | |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] | |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | |
else: | |
raise ValueError("Invalid padding strategy:" + str(self.padding_side)) | |
return encoded_inputs | |