Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/levit
/configuration_levit.py
# coding=utf-8 | |
# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""LeViT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from packaging import version | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class LevitConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LevitModel`]. It is used to instantiate a LeViT | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the LeViT | |
[facebook/levit-128S](https://huggingface.co/facebook/levit-128S) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
image_size (`int`, *optional*, defaults to 224): | |
The size of the input image. | |
num_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input image. | |
kernel_size (`int`, *optional*, defaults to 3): | |
The kernel size for the initial convolution layers of patch embedding. | |
stride (`int`, *optional*, defaults to 2): | |
The stride size for the initial convolution layers of patch embedding. | |
padding (`int`, *optional*, defaults to 1): | |
The padding size for the initial convolution layers of patch embedding. | |
patch_size (`int`, *optional*, defaults to 16): | |
The patch size for embeddings. | |
hidden_sizes (`List[int]`, *optional*, defaults to `[128, 256, 384]`): | |
Dimension of each of the encoder blocks. | |
num_attention_heads (`List[int]`, *optional*, defaults to `[4, 8, 12]`): | |
Number of attention heads for each attention layer in each block of the Transformer encoder. | |
depths (`List[int]`, *optional*, defaults to `[4, 4, 4]`): | |
The number of layers in each encoder block. | |
key_dim (`List[int]`, *optional*, defaults to `[16, 16, 16]`): | |
The size of key in each of the encoder blocks. | |
drop_path_rate (`int`, *optional*, defaults to 0): | |
The dropout probability for stochastic depths, used in the blocks of the Transformer encoder. | |
mlp_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): | |
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the | |
encoder blocks. | |
attention_ratios (`List[int]`, *optional*, defaults to `[2, 2, 2]`): | |
Ratio of the size of the output dimension compared to input dimension of attention layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
Example: | |
```python | |
>>> from transformers import LevitConfig, LevitModel | |
>>> # Initializing a LeViT levit-128S style configuration | |
>>> configuration = LevitConfig() | |
>>> # Initializing a model (with random weights) from the levit-128S style configuration | |
>>> model = LevitModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "levit" | |
def __init__( | |
self, | |
image_size=224, | |
num_channels=3, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
patch_size=16, | |
hidden_sizes=[128, 256, 384], | |
num_attention_heads=[4, 8, 12], | |
depths=[4, 4, 4], | |
key_dim=[16, 16, 16], | |
drop_path_rate=0, | |
mlp_ratio=[2, 2, 2], | |
attention_ratio=[2, 2, 2], | |
initializer_range=0.02, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.hidden_sizes = hidden_sizes | |
self.num_attention_heads = num_attention_heads | |
self.depths = depths | |
self.key_dim = key_dim | |
self.drop_path_rate = drop_path_rate | |
self.patch_size = patch_size | |
self.attention_ratio = attention_ratio | |
self.mlp_ratio = mlp_ratio | |
self.initializer_range = initializer_range | |
self.down_ops = [ | |
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], | |
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], | |
] | |
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig | |
class LevitOnnxConfig(OnnxConfig): | |
torch_onnx_minimum_version = version.parse("1.11") | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
return OrderedDict( | |
[ | |
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), | |
] | |
) | |
def atol_for_validation(self) -> float: | |
return 1e-4 | |