Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/llama
/configuration_llama.py
# coding=utf-8 | |
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""LLaMA model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...modeling_rope_utils import rope_config_validation | |
class LlamaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the LLaMA-7B. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`LlamaModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer decoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, | |
Llama 2 up to 4096, CodeLlama up to 16384. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
End of stream token id. | |
pretraining_tp (`int`, *optional*, defaults to 1): | |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | |
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to | |
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining | |
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | |
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | |
accordingly. | |
Expected contents: | |
`rope_type` (`str`): | |
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | |
'llama3'], with 'default' being the original RoPE implementation. | |
`factor` (`float`, *optional*): | |
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | |
most scaling types, a `factor` of x will enable the model to handle sequences of length x * | |
original maximum pre-trained length. | |
`original_max_position_embeddings` (`int`, *optional*): | |
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | |
pretraining. | |
`attention_factor` (`float`, *optional*): | |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | |
computation. If unspecified, it defaults to value recommended by the implementation, using the | |
`factor` field to infer the suggested value. | |
`beta_fast` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | |
ramp function. If unspecified, it defaults to 32. | |
`beta_slow` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | |
ramp function. If unspecified, it defaults to 1. | |
`short_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to short contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`long_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to long contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`low_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | |
`high_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | |
attention_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use a bias in the query, key, value and output projection layers during self-attention. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
mlp_bias (`bool`, *optional*, defaults to `False`): | |
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. | |
```python | |
>>> from transformers import LlamaModel, LlamaConfig | |
>>> # Initializing a LLaMA llama-7b style configuration | |
>>> configuration = LlamaConfig() | |
>>> # Initializing a model from the llama-7b style configuration | |
>>> model = LlamaModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "llama" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
hidden_act="silu", | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=1, | |
eos_token_id=2, | |
pretraining_tp=1, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
attention_bias=False, | |
attention_dropout=0.0, | |
mlp_bias=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.pretraining_tp = pretraining_tp | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.attention_bias = attention_bias | |
self.attention_dropout = attention_dropout | |
self.mlp_bias = mlp_bias | |
# Validate the correctness of rotary position embeddings parameters | |
# BC: if there is a 'type' field, move it to 'rope_type'. | |
if self.rope_scaling is not None and "type" in self.rope_scaling: | |
self.rope_scaling["rope_type"] = self.rope_scaling["type"] | |
rope_config_validation(self) | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |