Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/longt5
/modeling_longt5.py
# coding=utf-8 | |
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch LongT5 model.""" | |
import copy | |
import math | |
import warnings | |
from typing import Any, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
DUMMY_INPUTS, | |
DUMMY_MASK, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_torch_fx_proxy, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_longt5 import LongT5Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "LongT5Config" | |
_CHECKPOINT_FOR_DOC = "google/long-t5-local-base" | |
# TODO: Update before the merge | |
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor: | |
"""Pad a tensor so that a sequence length will be a multiple of `block_len`""" | |
pad_len = -x.shape[dim] % block_len | |
# Handle cases when an empty input sequence is given | |
if not all(x.shape): | |
new_shape = list(x.shape) | |
new_shape[dim] += pad_len | |
return torch.zeros(new_shape, dtype=x.dtype) | |
pad = [(0, 0)] * x.ndim | |
pad[dim] = (0, pad_len) | |
pad = sum(pad[::-1], ()) | |
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) | |
return x | |
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor: | |
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length | |
is not a multiple of `block_len`, it will be padded first with selected `pad_value`. | |
""" | |
# pad tensor to multiple of block_len | |
if x.shape[dim] % block_len != 0: | |
x = _pad_to_multiple(x, block_len, dim, pad_value=0) | |
num_blocks = x.shape[dim] // block_len | |
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :] | |
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion | |
if 0 in output_shape: | |
return torch.empty(output_shape, dtype=x.dtype, device=x.device) | |
return x.reshape(output_shape) | |
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor: | |
"""Concatenate three consecutive blocks for each input block for local attentiont. | |
For more information, see: https://arxiv.org/pdf/2112.07916.pdf. | |
""" | |
num_blocks = x.shape[block_dim] | |
pad = [(0, 0)] * x.ndim | |
pad[block_dim] = (1, 1) | |
pad = sum(pad[::-1], ()) | |
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] | |
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) | |
blocks_list: List[torch.Tensor] = [] | |
for i in range(3): | |
# We use indexing approach here: | |
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs | |
indices = [slice(0, None)] * x.ndim | |
indices[block_dim] = slice(i, i + num_blocks) | |
indices = tuple(indices) | |
blocks_list.append(x[indices]) | |
# [batch_size, num_blocks, 3 * block_len, ...] | |
return torch.cat(blocks_list, dim=sequence_dim) | |
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor: | |
"""Makes 3-blocked relative position ids for local attention.""" | |
position_ids = torch.arange(3 * block_len, dtype=torch.int32) | |
center_position_ids = position_ids[block_len:-block_len] | |
# [block_len, 3 * block_len] | |
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1) | |
return relative_position_ids | |
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor: | |
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" | |
relative_position_ids = _make_3block_relative_position_ids(block_len) | |
locality_mask = torch.abs(relative_position_ids) < block_len | |
locality_mask = locality_mask[None, None, :, :] | |
locality_mask = locality_mask.to(local_attention_mask.device) | |
return torch.logical_and(local_attention_mask, locality_mask) | |
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor: | |
"""Prepare attention mask to be applied for a local attention.""" | |
# [batch_size, num_blocks, block_len] | |
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1) | |
# [batch_size, num_block, 3 * block_len] | |
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2) | |
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1) | |
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2) | |
# [batch_size, num_block, block_len, 3 * block_len] | |
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask) | |
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) | |
# [batch_size, 1, num_block, block_len, 3 * block_len] | |
return local_attention_mask.unsqueeze(1).to(device) | |
def _make_global_fixed_block_ids( | |
attention_mask: torch.Tensor, global_block_size: int | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Obtain the "fixed block" global id corresponding to each input token. | |
This implementation is a simlified version of the original Flaxformr implementation adopted from: | |
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. | |
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for | |
the whole fixed block, are assigned to the preceding block. | |
Padding tokens from the original sequence are represented by -1. | |
""" | |
batch_size, seq_len = attention_mask.shape[:2] | |
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor: | |
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1 | |
block_ends = block_ends.to(block_ids.device) | |
true_block_ends = torch.logical_and(block_ends, block_ids >= 0) | |
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1 | |
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks) | |
return block_ids | |
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size | |
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask | |
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype) | |
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype) | |
_global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device) | |
global_block_ids = torch.where( | |
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound | |
) | |
# set padding tokens to -1 | |
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) | |
# [batch_size, seq_len] | |
global_block_ids = handle_orphan_tokens(global_block_ids) | |
num_globals = seq_len // global_block_size | |
# [batch_size, seq_len // global_block_size] | |
if num_globals > 0: | |
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1) | |
else: | |
_sequence_block_ids_max = torch.zeros( | |
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device | |
) | |
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1 | |
global_segment_ids = global_segment_ids.to(attention_mask.device) | |
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) | |
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int) | |
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor: | |
"""Create the relative position tensor for local -> global attention.""" | |
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) | |
global_seq_len = global_segment_ids.shape[-1] | |
global_positions = torch.arange(global_seq_len, device=block_ids.device) | |
side_relative_position = global_positions - block_ids[..., None] | |
return side_relative_position.type(torch.int64) | |
def _create_global_aggregates( | |
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int | |
) -> torch.Tensor: | |
"""Compute individual block aggregates by summing over individual blocks.""" | |
# (batch..., seq_len, global_seq_len)) | |
block_ids = block_ids.where( | |
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device) | |
) | |
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1] | |
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype)) | |
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5 | |
class LongT5LayerNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
try: | |
from apex.normalization import FusedRMSNorm | |
LongT5LayerNorm = FusedRMSNorm # noqa | |
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm") | |
except ImportError: | |
# using the normal LongT5LayerNorm | |
pass | |
except Exception: | |
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm") | |
pass | |
ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm) | |
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5 | |
class LongT5DenseActDense(nn.Module): | |
def __init__(self, config: LongT5Config): | |
super().__init__() | |
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_states = self.wi(hidden_states) | |
hidden_states = self.act(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
if ( | |
isinstance(self.wo.weight, torch.Tensor) | |
and hidden_states.dtype != self.wo.weight.dtype | |
and self.wo.weight.dtype != torch.int8 | |
): | |
hidden_states = hidden_states.to(self.wo.weight.dtype) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class LongT5DenseGatedActDense(nn.Module): | |
def __init__(self, config: LongT5Config): | |
super().__init__() | |
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.act = ACT2FN[config.dense_act_fn] | |
def forward(self, hidden_states): | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5 | |
class LongT5LayerFF(nn.Module): | |
def __init__(self, config: LongT5Config): | |
super().__init__() | |
if config.is_gated_act: | |
self.DenseReluDense = LongT5DenseGatedActDense(config) | |
else: | |
self.DenseReluDense = LongT5DenseActDense(config) | |
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, hidden_states): | |
forwarded_states = self.layer_norm(hidden_states) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5 | |
class LongT5Attention(nn.Module): | |
def __init__(self, config: LongT5Config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, query_length, key_length, device=None): | |
"""Compute binned relative position bias""" | |
if device is None: | |
device = self.relative_attention_bias.weight.device | |
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
relative_position = memory_position - context_position # shape (query_length, key_length) | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # shape (query_length, key_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
key_value_states=None, | |
position_bias=None, | |
past_key_value=None, | |
layer_head_mask=None, | |
query_length=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
""" | |
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
""" | |
# Input is (batch_size, seq_length, dim) | |
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
batch_size, seq_length = hidden_states.shape[:2] | |
real_seq_length = seq_length | |
if past_key_value is not None: | |
if len(past_key_value) != 2: | |
raise ValueError( | |
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
) | |
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
def unshape(states): | |
"""reshape""" | |
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
"""projects hidden states correctly to key/query states""" | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(hidden_states)) | |
elif past_key_value is None: | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
if past_key_value is not None: | |
if key_value_states is None: | |
# self-attn | |
# (batch_size, n_heads, key_length, dim_per_head) | |
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
elif past_key_value.shape[2] != key_value_states.shape[1]: | |
# checking that the `sequence_length` of the `past_key_value` is the same as | |
# the provided `key_value_states` to support prefix tuning | |
# cross-attn | |
# (batch_size, n_heads, seq_length, dim_per_head) | |
hidden_states = shape(proj_layer(key_value_states)) | |
else: | |
# cross-attn | |
hidden_states = past_key_value | |
return hidden_states | |
# get query states | |
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) | |
# get key/value states | |
key_states = project( | |
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
) | |
value_states = project( | |
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | |
) | |
# compute scores | |
scores = torch.matmul( | |
query_states, key_states.transpose(3, 2) | |
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
if position_bias is None: | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) | |
# if key and values are already calculated | |
# we want only the last query position bias | |
if past_key_value is not None: | |
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
if mask is not None: | |
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
if self.pruned_heads: | |
mask = torch.ones(position_bias.shape[1]) | |
mask[list(self.pruned_heads)] = 0 | |
position_bias_masked = position_bias[:, mask.bool()] | |
else: | |
position_bias_masked = position_bias | |
scores += position_bias_masked | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
scores | |
) # (batch_size, n_heads, seq_length, key_length) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.dropout, training=self.training | |
) # (batch_size, n_heads, seq_length, key_length) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) | |
attn_output = self.o(attn_output) | |
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
class LongT5LocalAttention(nn.Module): | |
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.local_radius = config.local_radius | |
self.block_len = self.local_radius + 1 | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
self.gradient_checkpointing = False | |
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, block_length: int): | |
"""Compute binned relative position bias""" | |
target_device = ( | |
self.relative_attention_bias.weight.device | |
if self.relative_attention_bias.weight.device.type != "meta" | |
else None | |
) | |
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) | |
context_position = memory_position[block_length:-block_length] | |
# (block_length, 3 * block_length) | |
relative_position = memory_position[None, :] - context_position[:, None] | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # (block_length, 3 * block_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
# (block_length, 3 * block_length, num_heads) | |
values = self.relative_attention_bias(relative_position_bucket) | |
# (1, 1, num_heads, block_length, 3 * block_length) | |
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) | |
return values | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
output_attentions=False, | |
): | |
batch_size, seq_length = hidden_states.shape[:2] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) | |
def unshape(states): | |
"""reshape""" | |
return states.contiguous().view(batch_size, -1, self.inner_dim) | |
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head) | |
query_states = shape(self.q(hidden_states)) | |
key_states = shape(self.k(hidden_states)) | |
value_states = shape(self.v(hidden_states)) | |
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) | |
query_states = _split_into_blocks(query_states, self.block_len, dim=1) | |
key_states = _split_into_blocks(key_states, self.block_len, dim=1) | |
value_states = _split_into_blocks(value_states, self.block_len, dim=1) | |
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) | |
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) | |
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) | |
# Compute scores | |
scores = torch.einsum( | |
"...qhd,...khd->...hqk", query_states, key_states | |
) # (batch_size, num_block, n_heads, block_len, 3 * block_len) | |
if position_bias is None: | |
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(self.block_len) | |
if mask is not None: | |
# Replace masked positions with -1e10 (according to the original implementation) | |
mask = torch.where(mask > 0, 0.0, -1e10) | |
# We need to adjust position bias shape to be sum with mask | |
position_bias = position_bias + mask.transpose(1, 2) | |
scores += position_bias | |
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len) | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) | |
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_weights = attn_weights.type(value_states.dtype) | |
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) | |
attn_output = attn_output[:, :seq_length, :] | |
attn_output = self.o(attn_output) | |
present_key_value_state = None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
class LongT5TransientGlobalAttention(nn.Module): | |
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
self.has_relative_attention_bias = has_relative_attention_bias | |
self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
self.relative_attention_max_distance = config.relative_attention_max_distance | |
self.d_model = config.d_model | |
self.key_value_proj_dim = config.d_kv | |
self.n_heads = config.num_heads | |
self.local_radius = config.local_radius | |
self.block_len = self.local_radius + 1 | |
self.global_block_size = config.global_block_size | |
self.dropout = config.dropout_rate | |
self.inner_dim = self.n_heads * self.key_value_proj_dim | |
# Mesh TensorFlow initialization to avoid scaling before softmax | |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
if self.has_relative_attention_bias: | |
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.pruned_heads = set() | |
# Relativen attention bias & Layer norm for global attention | |
if self.has_relative_attention_bias: | |
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
) | |
# Prune linear layers | |
self.q = prune_linear_layer(self.q, index) | |
self.k = prune_linear_layer(self.k, index) | |
self.v = prune_linear_layer(self.v, index) | |
self.o = prune_linear_layer(self.o, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.inner_dim = self.key_value_proj_dim * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket | |
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
""" | |
Adapted from Mesh Tensorflow: | |
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
Translate relative position to a bucket number for relative attention. The relative position is defined as | |
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
This should allow for more graceful generalization to longer sequences than the model has been trained on | |
Args: | |
relative_position: an int32 Tensor | |
bidirectional: a boolean - whether the attention is bidirectional | |
num_buckets: an integer | |
max_distance: an integer | |
Returns: | |
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
""" | |
relative_buckets = 0 | |
if bidirectional: | |
num_buckets //= 2 | |
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
relative_position = torch.abs(relative_position) | |
else: | |
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
# now relative_position is in the range [0, inf) | |
# half of the buckets are for exact increments in positions | |
max_exact = num_buckets // 2 | |
is_small = relative_position < max_exact | |
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
relative_position_if_large = max_exact + ( | |
torch.log(relative_position.float() / max_exact) | |
/ math.log(max_distance / max_exact) | |
* (num_buckets - max_exact) | |
).to(torch.long) | |
relative_position_if_large = torch.min( | |
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
) | |
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
return relative_buckets | |
def compute_bias(self, block_length: int): | |
"""Compute binned relative position bias""" | |
target_device = ( | |
self.relative_attention_bias.weight.device | |
if self.relative_attention_bias.weight.device.type != "meta" | |
else None | |
) | |
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) | |
context_position = memory_position[block_length:-block_length] | |
# (block_length, 3 * block_length) | |
relative_position = memory_position[None, :] - context_position[:, None] | |
relative_position_bucket = self._relative_position_bucket( | |
relative_position, # (block_length, 3 * block_length) | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
# (block_length, 3 * block_length, num_heads) | |
values = self.relative_attention_bias(relative_position_bucket) | |
# (1, 1, num_heads, block_length, 3 * block_length) | |
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) | |
return values | |
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor: | |
# (batch_size, 1, seq_len, global_seq_len) | |
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...] | |
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10) | |
# (batch_size, seq_len, global_seq_len) | |
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size) | |
side_relative_position_bucket = self._relative_position_bucket( | |
side_relative_position, | |
bidirectional=(not self.is_decoder), | |
num_buckets=self.relative_attention_num_buckets, | |
max_distance=self.relative_attention_max_distance, | |
) | |
# (batch_size, seq_len, global_seq_len, num_heads) | |
side_bias = self.global_relative_attention_bias(side_relative_position_bucket) | |
# (batch_size, num_heads, seq_len, global_seq_len) | |
side_bias = side_bias.permute([0, 3, 1, 2]) | |
# (batch_size, num_heads, seq_len, global_seq_len) | |
attention_side_bias = attention_side_bias + side_bias | |
return attention_side_bias | |
def forward( | |
self, | |
hidden_states, | |
mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
output_attentions=False, | |
): | |
batch_size, seq_length = hidden_states.shape[:2] | |
def shape(states): | |
"""projection""" | |
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) | |
def unshape(states): | |
"""reshape""" | |
return states.contiguous().view(batch_size, -1, self.inner_dim) | |
# Prepare components for transient-global attention | |
# Obtain block_ids and global_segment_ids | |
# global_seq_len := seq_len // self.global_block_size | |
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len) | |
block_ids, global_segment_ids = _make_global_fixed_block_ids( | |
mask if mask is not None else torch.ones(hidden_states.shape[:-1]), | |
self.global_block_size, | |
) | |
# Create global inputs | |
_global_seq_len = global_segment_ids.shape[-1] | |
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) | |
global_inputs = self.global_input_layer_norm(global_inputs) | |
# get query states -> (batch_size, seq_length, n_heads, dim_per_head) | |
query_states = shape(self.q(hidden_states)) | |
key_states = shape(self.k(hidden_states)) | |
value_states = shape(self.v(hidden_states)) | |
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head) | |
side_key_states = shape(self.k(global_inputs)) | |
side_value_states = shape(self.v(global_inputs)) | |
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) | |
query_states = _split_into_blocks(query_states, self.block_len, dim=1) | |
key_states = _split_into_blocks(key_states, self.block_len, dim=1) | |
value_states = _split_into_blocks(value_states, self.block_len, dim=1) | |
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) | |
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) | |
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) | |
# Tile side inputs across local key/value blocks | |
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) | |
reps = [1] * (side_key_states.ndim + 1) | |
reps[1] = key_states.shape[1] | |
side_key_states = side_key_states.unsqueeze(1).repeat(reps) | |
side_value_states = side_value_states.unsqueeze(1).repeat(reps) | |
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones | |
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) | |
key_states = torch.cat([key_states, side_key_states], dim=2) | |
value_states = torch.cat([value_states, side_value_states], dim=2) | |
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len) | |
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states) | |
if mask is not None: | |
# We need to adjust position bias shape to be sum with mask | |
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device) | |
# Replace masked positions with -10_000 (according to the original implementation) | |
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10) | |
else: | |
local_attention_mask = None | |
if position_bias is None: | |
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) | |
if not self.has_relative_attention_bias: | |
position_bias = torch.zeros( | |
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), | |
device=scores.device, | |
dtype=scores.dtype, | |
) | |
if self.gradient_checkpointing and self.training: | |
position_bias.requires_grad = True | |
else: | |
position_bias = self.compute_bias(self.block_len) | |
if local_attention_mask is not None: | |
# (batch_size, 1, n_heads, block_len, 3 * block_len) | |
position_bias = position_bias + local_attention_mask.transpose(1, 2) | |
position_bias = position_bias.type(scores.dtype) | |
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) | |
if mask is None: | |
mask = torch.ones(batch_size, seq_length) | |
# (batch_size, num_heads, seq_len, global_seq_len) | |
side_position_bias = self.compute_side_bias(mask, global_segment_ids) | |
# (batch_size, num_blocks, num_heads, block_len, global_seq_len) | |
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2) | |
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device) | |
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len) | |
position_bias = torch.cat([position_bias, side_position_bias], dim=-1) | |
scores += position_bias | |
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len) | |
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
# Mask heads if we want to | |
if layer_head_mask is not None: | |
attn_weights = attn_weights * layer_head_mask | |
attn_weights = attn_weights.type(value_states.dtype) | |
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) | |
attn_output = attn_output[:, :seq_length, :] | |
attn_output = self.o(attn_output) | |
present_key_value_state = None | |
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
if output_attentions: | |
outputs = outputs + (attn_weights,) | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5 | |
class LongT5LayerSelfAttention(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias) | |
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.SelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class LongT5LayerLocalSelfAttention(nn.Module): | |
"""Local self attention used in encoder""" | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias) | |
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
output_attentions=False, | |
**kwargs: Any, # to accept past_key_value and use_cache kwargs | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.LocalSelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class LongT5LayerTransientGlobalSelfAttention(nn.Module): | |
"""Transient-Global self attention used in encoder""" | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention( | |
config, has_relative_attention_bias=has_relative_attention_bias | |
) | |
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
output_attentions=False, | |
**kwargs: Any, # to accept past_key_value and use_cache kwargs | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.TransientGlobalSelfAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = hidden_states + self.dropout(attention_output[0]) | |
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5 | |
class LongT5LayerCrossAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False) | |
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward( | |
self, | |
hidden_states, | |
key_value_states, | |
attention_mask=None, | |
position_bias=None, | |
layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
query_length=None, | |
output_attentions=False, | |
): | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.EncDecAttention( | |
normed_hidden_states, | |
mask=attention_mask, | |
key_value_states=key_value_states, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
query_length=query_length, | |
output_attentions=output_attentions, | |
) | |
layer_output = hidden_states + self.dropout(attention_output[0]) | |
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
return outputs | |
class LongT5Block(nn.Module): | |
def __init__(self, config, has_relative_attention_bias=False): | |
super().__init__() | |
self.is_decoder = config.is_decoder | |
if config.is_decoder: | |
attention_layer = LongT5LayerSelfAttention | |
elif config.encoder_attention_type == "local": | |
attention_layer = LongT5LayerLocalSelfAttention | |
elif config.encoder_attention_type == "transient-global": | |
attention_layer = LongT5LayerTransientGlobalSelfAttention | |
else: | |
raise ValueError( | |
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " | |
f"but got {config.encoder_attention_type}." | |
) | |
self.layer = nn.ModuleList() | |
self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias)) | |
if self.is_decoder: | |
self.layer.append(LongT5LayerCrossAttention(config)) | |
self.layer.append(LongT5LayerFF(config)) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
position_bias=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
encoder_decoder_position_bias=None, | |
layer_head_mask=None, | |
cross_attn_layer_head_mask=None, | |
past_key_value=None, | |
use_cache=False, | |
output_attentions=False, | |
return_dict=True, | |
): | |
if past_key_value is not None: | |
if not self.is_decoder: | |
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
if len(past_key_value) != expected_num_past_key_values: | |
raise ValueError( | |
f"There should be {expected_num_past_key_values} past states. " | |
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
f"Got {len(past_key_value)} past key / value states" | |
) | |
self_attn_past_key_value = past_key_value[:2] | |
cross_attn_past_key_value = past_key_value[2:] | |
else: | |
self_attn_past_key_value, cross_attn_past_key_value = None, None | |
self_attention_outputs = self.layer[0]( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_bias=position_bias, | |
layer_head_mask=layer_head_mask, | |
past_key_value=self_attn_past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states, present_key_value_state = self_attention_outputs[:2] | |
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
if do_cross_attention: | |
# the actual query length is unknown for cross attention | |
# if using past key value states. Need to inject it here | |
if present_key_value_state is not None: | |
query_length = present_key_value_state[0].shape[2] | |
else: | |
query_length = None | |
cross_attention_outputs = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_bias=encoder_decoder_position_bias, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
query_length=query_length, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
hidden_states = cross_attention_outputs[0] | |
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
# Combine self attn and cross attn key value states | |
if present_key_value_state is not None: | |
present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
# Keep cross-attention outputs and relative position weights | |
attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
# Apply Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states) | |
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ | |
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if use_cache: | |
outputs = outputs + (present_key_value_state,) + attention_outputs | |
else: | |
outputs = outputs + attention_outputs | |
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
class LongT5PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LongT5Config | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["LongT5Block"] | |
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs | |
def dummy_inputs(self): | |
input_ids = torch.tensor(DUMMY_INPUTS) | |
input_mask = torch.tensor(DUMMY_MASK) | |
dummy_inputs = { | |
"decoder_input_ids": input_ids, | |
"input_ids": input_ids, | |
"decoder_attention_mask": input_mask, | |
} | |
return dummy_inputs | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor # Used for testing weights initialization | |
if isinstance(module, LongT5LayerNorm): | |
module.weight.data.fill_(factor * 1.0) | |
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)): | |
# Mesh TensorFlow embeddings initialization | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
elif isinstance(module, LongT5DenseActDense): | |
# Mesh TensorFlow FF initialization | |
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
module.wi.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, LongT5DenseGatedActDense): | |
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
module.wi_0.bias.data.zero_() | |
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
module.wi_1.bias.data.zero_() | |
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
module.wo.bias.data.zero_() | |
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)): | |
# Mesh TensorFlow attention initialization to avoid scaling before softmax | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
d_model = self.config.d_model | |
key_value_proj_dim = self.config.d_kv | |
n_heads = self.config.num_heads | |
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
if module.has_relative_attention_bias: | |
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
if isinstance(module, LongT5TransientGlobalAttention): | |
module.global_relative_attention_bias.weight.data.normal_( | |
mean=0.0, std=factor * ((d_model) ** -0.5) | |
) | |
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5 | |
def _shift_right(self, input_ids): | |
decoder_start_token_id = self.config.decoder_start_token_id | |
pad_token_id = self.config.pad_token_id | |
if decoder_start_token_id is None: | |
raise ValueError( | |
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. " | |
"See LongT5 docs for more information." | |
) | |
# shift inputs to the right | |
if is_torch_fx_proxy(input_ids): | |
# Item assignment is not supported natively for proxies. | |
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
else: | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
class LongT5Stack(LongT5PreTrainedModel): | |
def __init__(self, config, embed_tokens=None): | |
super().__init__(config) | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) | |
if embed_tokens is not None: | |
self.embed_tokens.weight = embed_tokens.weight | |
self.is_decoder = config.is_decoder | |
self.local_radius = config.local_radius | |
self.block_len = self.local_radius + 1 | |
self.block = nn.ModuleList( | |
[LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] | |
) | |
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embed_tokens = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
inputs_embeds=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError( | |
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
err_msg_prefix = "decoder_" if self.is_decoder else "" | |
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
if inputs_embeds is None: | |
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" | |
inputs_embeds = self.embed_tokens(input_ids) | |
batch_size, seq_length = input_shape | |
# required mask seq length can be calculated via length of past | |
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
if use_cache is True: | |
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" | |
if attention_mask is None: | |
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
# initialize past_key_values with `None` if past does not exist | |
if past_key_values is None: | |
past_key_values = [None] * len(self.block) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used | |
if self.is_decoder: | |
extended_attention_mask = self.get_extended_attention_mask( | |
attention_mask, input_shape, inputs_embeds.device | |
) | |
elif self.config.encoder_attention_type == "local": | |
extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device) | |
else: # we need to use both local attention mask and standard extended mask for transient-global attention | |
extended_attention_mask = attention_mask | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
present_key_value_states = () if use_cache else None | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
position_bias = None | |
encoder_decoder_position_bias = None | |
hidden_states = self.dropout(inputs_embeds) | |
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
layer_head_mask = head_mask[i] | |
cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.forward, | |
hidden_states, | |
extended_attention_mask, | |
position_bias, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, | |
encoder_decoder_position_bias, | |
layer_head_mask, | |
cross_attn_layer_head_mask, | |
None, # past_key_value is always None with gradient checkpointing | |
use_cache, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask=extended_attention_mask, | |
position_bias=position_bias, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
encoder_decoder_position_bias=encoder_decoder_position_bias, | |
layer_head_mask=layer_head_mask, | |
cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# layer_outputs is a tuple with: | |
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
if use_cache is False: | |
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
hidden_states, present_key_value_state = layer_outputs[:2] | |
# We share the position biases between the layers - the first layer store them | |
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
# (cross-attention position bias), (cross-attention weights) | |
position_bias = layer_outputs[2] | |
if self.is_decoder and encoder_hidden_states is not None: | |
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
# append next layer key value states | |
if use_cache: | |
present_key_value_states = present_key_value_states + (present_key_value_state,) | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[3],) | |
if self.is_decoder: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
present_key_value_states, | |
all_hidden_states, | |
all_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_value_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
LONGT5_START_DOCSTRING = r""" | |
The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long | |
Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo | |
Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising | |
generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different | |
efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`LongT5Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
LONGT5_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so | |
you should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
[What are input IDs?](../glossary#input-ids) | |
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 | |
Training](./longt5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 | |
Training](./longt5#training). | |
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
`[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
LONGT5_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so | |
you should be able to pad the inputs on both the right and the left. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for detail. | |
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 | |
Training](./longt5#training). | |
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
__HEAD_MASK_WARNING_MSG = """ | |
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | |
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | |
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | |
num_heads)`. | |
""" | |
class LongT5Model(LongT5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [ | |
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | |
def __init__(self, config: LongT5Config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = LongT5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = LongT5Stack(decoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, LongT5Model | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") | |
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base") | |
>>> # Let's try a very long encoder input. | |
>>> input_ids = tokenizer( | |
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
>>> # forward pass | |
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class LongT5ForConditionalGeneration(LongT5PreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [ | |
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
] | |
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | |
def __init__(self, config: LongT5Config): | |
super().__init__(config) | |
self.model_dim = config.d_model | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.is_decoder = False | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = LongT5Stack(encoder_config, self.shared) | |
decoder_config = copy.deepcopy(config) | |
decoder_config.is_decoder = True | |
decoder_config.is_encoder_decoder = False | |
decoder_config.num_layers = config.num_decoder_layers | |
self.decoder = LongT5Stack(decoder_config, self.shared) | |
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
self.decoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
decoder_head_mask: Optional[torch.FloatTensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
labels in `[0, ..., config.vocab_size]` | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps") | |
>>> model = LongT5ForConditionalGeneration.from_pretrained( | |
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps" | |
... ) | |
>>> # Let's try a very long input. | |
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt") | |
>>> input_ids = inputs.input_ids | |
>>> outputs = model.generate(input_ids) | |
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
abstractthe aim of this article is to provide an overview of the literature on the role of dog | |
```""" | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
if head_mask is not None and decoder_head_mask is None: | |
if self.config.num_layers == self.config.num_decoder_layers: | |
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
decoder_head_mask = head_mask | |
# Encode if needed (training, first prediction pass) | |
if encoder_outputs is None: | |
# Convert encoder inputs in embeddings if needed | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
hidden_states = encoder_outputs[0] | |
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
# get decoder inputs from shifting lm labels to the right | |
decoder_input_ids = self._shift_right(labels) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
past_key_values=past_key_values, | |
encoder_hidden_states=hidden_states, | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = decoder_outputs[0] | |
if self.config.tie_word_embeddings: | |
# Rescale output before projecting on vocab | |
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
sequence_output = sequence_output * (self.model_dim**-0.5) | |
lm_logits = self.lm_head(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=-100) | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
if not return_dict: | |
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past_key_values is used | |
if past_key_values is not None: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
return { | |
"decoder_input_ids": input_ids, | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return self._shift_right(labels) | |
def _reorder_cache(self, past_key_values, beam_idx): | |
# if decoder past is not included in output | |
# speedy decoding is disabled and no need to reorder | |
if past_key_values is None: | |
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
return past_key_values | |
reordered_decoder_past = () | |
for layer_past_states in past_key_values: | |
# get the correct batch idx from layer past batch dim | |
# batch dim of `past` is at 2nd position | |
reordered_layer_past_states = () | |
for layer_past_state in layer_past_states: | |
# need to set correct `past` for each of the four key / value states | |
reordered_layer_past_states = reordered_layer_past_states + ( | |
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
) | |
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape | |
assert len(reordered_layer_past_states) == len(layer_past_states) | |
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
return reordered_decoder_past | |
class LongT5EncoderModel(LongT5PreTrainedModel): | |
_tied_weights_keys = ["encoder.embed_tokens.weight"] | |
_keys_to_ignore_on_load_unexpected = [r"decoder"] | |
def __init__(self, config: LongT5Config): | |
super().__init__(config) | |
self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
encoder_config = copy.deepcopy(config) | |
encoder_config.use_cache = False | |
encoder_config.is_encoder_decoder = False | |
self.encoder = LongT5Stack(encoder_config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, new_embeddings): | |
self.shared = new_embeddings | |
self.encoder.set_input_embeddings(new_embeddings) | |
def _tie_weights(self): | |
if self.config.tie_word_embeddings: | |
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | |
def get_encoder(self): | |
return self.encoder | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") | |
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base") | |
>>> input_ids = tokenizer( | |
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt" | |
... ).input_ids # Batch size 1 | |
>>> outputs = model(input_ids=input_ids) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return encoder_outputs | |