Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/luke
/modeling_luke.py
# coding=utf-8 | |
# Copyright Studio Ousia and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch LUKE model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN, gelu | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_luke import LukeConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "LukeConfig" | |
_CHECKPOINT_FOR_DOC = "studio-ousia/luke-base" | |
class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling): | |
""" | |
Base class for outputs of the LUKE model. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): | |
Sequence of entity hidden-states at the output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): | |
Last layer hidden-state of the first token of the sequence (classification token) further processed by a | |
Linear layer and a Tanh activation function. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer | |
plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length + | |
entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to | |
compute the weighted average in the self-attention heads. | |
""" | |
entity_last_hidden_state: torch.FloatTensor = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class BaseLukeModelOutput(BaseModelOutput): | |
""" | |
Base class for model's outputs, with potential hidden states and attentions. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): | |
Sequence of entity hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
entity_last_hidden_state: torch.FloatTensor = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeMaskedLMOutput(ModelOutput): | |
""" | |
Base class for model's outputs, with potential hidden states and attentions. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
The sum of masked language modeling (MLM) loss and entity prediction loss. | |
mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Masked language modeling (MLM) loss. | |
mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Masked entity prediction (MEP) loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
mlm_loss: Optional[torch.FloatTensor] = None | |
mep_loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
entity_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class EntityClassificationOutput(ModelOutput): | |
""" | |
Outputs of entity classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer | |
plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class EntityPairClassificationOutput(ModelOutput): | |
""" | |
Outputs of entity pair classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer | |
plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class EntitySpanClassificationOutput(ModelOutput): | |
""" | |
Outputs of entity span classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer | |
plus the initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeSequenceClassifierOutput(ModelOutput): | |
""" | |
Outputs of sentence classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeTokenClassifierOutput(ModelOutput): | |
""" | |
Base class for outputs of token classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeQuestionAnsweringModelOutput(ModelOutput): | |
""" | |
Outputs of question answering models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
Span-start scores (before SoftMax). | |
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): | |
Span-end scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
start_logits: torch.FloatTensor = None | |
end_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeMultipleChoiceModelOutput(ModelOutput): | |
""" | |
Outputs of multiple choice models. | |
Args: | |
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): | |
Classification loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): | |
*num_choices* is the second dimension of the input tensors. (see *input_ids* above). | |
Classification scores (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each | |
layer plus the initial entity embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
class LukeEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# End copy | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
class LukeEntityEmbeddings(nn.Module): | |
def __init__(self, config: LukeConfig): | |
super().__init__() | |
self.config = config | |
self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) | |
if config.entity_emb_size != config.hidden_size: | |
self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None | |
): | |
if token_type_ids is None: | |
token_type_ids = torch.zeros_like(entity_ids) | |
entity_embeddings = self.entity_embeddings(entity_ids) | |
if self.config.entity_emb_size != self.config.hidden_size: | |
entity_embeddings = self.entity_embedding_dense(entity_embeddings) | |
position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) | |
position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) | |
position_embeddings = position_embeddings * position_embedding_mask | |
position_embeddings = torch.sum(position_embeddings, dim=-2) | |
position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = entity_embeddings + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class LukeSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.use_entity_aware_attention = config.use_entity_aware_attention | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
if self.use_entity_aware_attention: | |
self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
word_size = word_hidden_states.size(1) | |
if entity_hidden_states is None: | |
concat_hidden_states = word_hidden_states | |
else: | |
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) | |
key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) | |
if self.use_entity_aware_attention and entity_hidden_states is not None: | |
# compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) | |
# query layers | |
w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) | |
w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) | |
e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) | |
e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) | |
# compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above | |
w2w_key_layer = key_layer[:, :, :word_size, :] | |
e2w_key_layer = key_layer[:, :, :word_size, :] | |
w2e_key_layer = key_layer[:, :, word_size:, :] | |
e2e_key_layer = key_layer[:, :, word_size:, :] | |
# compute attention scores based on the dot product between the query and key vectors | |
w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) | |
w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) | |
e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) | |
e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) | |
# combine attention scores to create the final attention score matrix | |
word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) | |
entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) | |
attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) | |
else: | |
query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in LukeModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
output_word_hidden_states = context_layer[:, :word_size, :] | |
if entity_hidden_states is None: | |
output_entity_hidden_states = None | |
else: | |
output_entity_hidden_states = context_layer[:, word_size:, :] | |
if output_attentions: | |
outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) | |
else: | |
outputs = (output_word_hidden_states, output_entity_hidden_states) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
class LukeSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LukeAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = LukeSelfAttention(config) | |
self.output = LukeSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
raise NotImplementedError("LUKE does not support the pruning of attention heads") | |
def forward( | |
self, | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
word_size = word_hidden_states.size(1) | |
self_outputs = self.self( | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
) | |
if entity_hidden_states is None: | |
concat_self_outputs = self_outputs[0] | |
concat_hidden_states = word_hidden_states | |
else: | |
concat_self_outputs = torch.cat(self_outputs[:2], dim=1) | |
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) | |
attention_output = self.output(concat_self_outputs, concat_hidden_states) | |
word_attention_output = attention_output[:, :word_size, :] | |
if entity_hidden_states is None: | |
entity_attention_output = None | |
else: | |
entity_attention_output = attention_output[:, word_size:, :] | |
# add attentions if we output them | |
outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
class LukeIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput | |
class LukeOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class LukeLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = LukeAttention(config) | |
self.intermediate = LukeIntermediate(config) | |
self.output = LukeOutput(config) | |
def forward( | |
self, | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
word_size = word_hidden_states.size(1) | |
self_attention_outputs = self.attention( | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
if entity_hidden_states is None: | |
concat_attention_output = self_attention_outputs[0] | |
else: | |
concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) | |
outputs = self_attention_outputs[2:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output | |
) | |
word_layer_output = layer_output[:, :word_size, :] | |
if entity_hidden_states is None: | |
entity_layer_output = None | |
else: | |
entity_layer_output = layer_output[:, word_size:, :] | |
outputs = (word_layer_output, entity_layer_output) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class LukeEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_word_hidden_states = () if output_hidden_states else None | |
all_entity_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) | |
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module( | |
word_hidden_states, | |
entity_hidden_states, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
) | |
word_hidden_states = layer_outputs[0] | |
if entity_hidden_states is not None: | |
entity_hidden_states = layer_outputs[1] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) | |
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
word_hidden_states, | |
all_word_hidden_states, | |
all_self_attentions, | |
entity_hidden_states, | |
all_entity_hidden_states, | |
] | |
if v is not None | |
) | |
return BaseLukeModelOutput( | |
last_hidden_state=word_hidden_states, | |
hidden_states=all_word_hidden_states, | |
attentions=all_self_attentions, | |
entity_last_hidden_state=entity_hidden_states, | |
entity_hidden_states=all_entity_hidden_states, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler | |
class LukePooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class EntityPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class EntityPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transform = EntityPredictionHeadTransform(config) | |
self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) + self.bias | |
return hidden_states | |
class LukePreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = LukeConfig | |
base_model_prefix = "luke" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"] | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
if module.embedding_dim == 1: # embedding for bias parameters | |
module.weight.data.zero_() | |
else: | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
LUKE_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`LukeConfig`]): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
LUKE_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`): | |
Indices of entity tokens in the entity vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*): | |
Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`: | |
- 1 for entity tokens that are **not masked**, | |
- 0 for entity tokens that are **masked**. | |
entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): | |
Segment token indices to indicate first and second portions of the entity token inputs. Indices are | |
selected in `[0, 1]`: | |
- 0 corresponds to a *portion A* entity token, | |
- 1 corresponds to a *portion B* entity token. | |
entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*): | |
Indices of positions of each input entity in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class LukeModel(LukePreTrainedModel): | |
def __init__(self, config: LukeConfig, add_pooling_layer: bool = True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = LukeEmbeddings(config) | |
self.entity_embeddings = LukeEntityEmbeddings(config) | |
self.encoder = LukeEncoder(config) | |
self.pooler = LukePooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def get_entity_embeddings(self): | |
return self.entity_embeddings.entity_embeddings | |
def set_entity_embeddings(self, value): | |
self.entity_embeddings.entity_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
raise NotImplementedError("LUKE does not support the pruning of attention heads") | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseLukeModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, LukeModel | |
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base") | |
>>> model = LukeModel.from_pretrained("studio-ousia/luke-base") | |
# Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" | |
>>> text = "Beyoncé lives in Los Angeles." | |
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" | |
>>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") | |
>>> outputs = model(**encoding) | |
>>> word_last_hidden_state = outputs.last_hidden_state | |
>>> entity_last_hidden_state = outputs.entity_last_hidden_state | |
# Input Wikipedia entities to obtain enriched contextualized representations of word tokens | |
>>> text = "Beyoncé lives in Los Angeles." | |
>>> entities = [ | |
... "Beyoncé", | |
... "Los Angeles", | |
... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" | |
>>> entity_spans = [ | |
... (0, 7), | |
... (17, 28), | |
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" | |
>>> encoding = tokenizer( | |
... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" | |
... ) | |
>>> outputs = model(**encoding) | |
>>> word_last_hidden_state = outputs.last_hidden_state | |
>>> entity_last_hidden_state = outputs.entity_last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones((batch_size, seq_length), device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
if entity_ids is not None: | |
entity_seq_length = entity_ids.size(1) | |
if entity_attention_mask is None: | |
entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) | |
if entity_token_type_ids is None: | |
entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
# First, compute word embeddings | |
word_embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
# Second, compute extended attention mask | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) | |
# Third, compute entity embeddings and concatenate with word embeddings | |
if entity_ids is None: | |
entity_embedding_output = None | |
else: | |
entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) | |
# Fourth, send embeddings through the model | |
encoder_outputs = self.encoder( | |
word_embedding_output, | |
entity_embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) | |
sequence_output = encoder_outputs[0] | |
# Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseLukeModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, | |
entity_hidden_states=encoder_outputs.entity_hidden_states, | |
) | |
def get_extended_attention_mask( | |
self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] | |
): | |
""" | |
Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
Arguments: | |
word_attention_mask (`torch.LongTensor`): | |
Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. | |
entity_attention_mask (`torch.LongTensor`, *optional*): | |
Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. | |
Returns: | |
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | |
""" | |
attention_mask = word_attention_mask | |
if entity_attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) | |
if attention_mask.dim() == 3: | |
extended_attention_mask = attention_mask[:, None, :, :] | |
elif attention_mask.dim() == 2: | |
extended_attention_mask = attention_mask[:, None, None, :] | |
else: | |
raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") | |
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min | |
return extended_attention_mask | |
def create_position_ids_from_input_ids(input_ids, padding_idx): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask | |
return incremental_indices.long() + padding_idx | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead | |
class LukeLMHead(nn.Module): | |
"""Roberta Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
self.decoder.bias = self.bias | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) | |
return x | |
def _tie_weights(self): | |
# To tie those two weights if they get disconnected (on TPU or when the bias is resized) | |
# For accelerate compatibility and to not break backward compatibility | |
if self.decoder.bias.device.type == "meta": | |
self.decoder.bias = self.bias | |
else: | |
self.bias = self.decoder.bias | |
class LukeForMaskedLM(LukePreTrainedModel): | |
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.luke = LukeModel(config) | |
self.lm_head = LukeLMHead(config) | |
self.entity_predictions = EntityPredictionHead(config) | |
self.loss_fn = nn.CrossEntropyLoss() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def tie_weights(self): | |
super().tie_weights() | |
self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.LongTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
entity_labels: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, LukeMaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
loss = None | |
mlm_loss = None | |
logits = self.lm_head(outputs.last_hidden_state) | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
if loss is None: | |
loss = mlm_loss | |
mep_loss = None | |
entity_logits = None | |
if outputs.entity_last_hidden_state is not None: | |
entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) | |
if entity_labels is not None: | |
mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) | |
if loss is None: | |
loss = mep_loss | |
else: | |
loss = loss + mep_loss | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss, | |
mlm_loss, | |
mep_loss, | |
logits, | |
entity_logits, | |
outputs.hidden_states, | |
outputs.entity_hidden_states, | |
outputs.attentions, | |
] | |
if v is not None | |
) | |
return LukeMaskedLMOutput( | |
loss=loss, | |
mlm_loss=mlm_loss, | |
mep_loss=mep_loss, | |
logits=logits, | |
entity_logits=entity_logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForEntityClassification(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.luke = LukeModel(config) | |
self.num_labels = config.num_labels | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, EntityClassificationOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): | |
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is | |
used for the single-label classification. In this case, labels should contain the indices that should be in | |
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy | |
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 | |
and 1 indicate false and true, respectively. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, LukeForEntityClassification | |
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") | |
>>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") | |
>>> text = "Beyoncé lives in Los Angeles." | |
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" | |
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> predicted_class_idx = logits.argmax(-1).item() | |
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) | |
Predicted class: person | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
feature_vector = outputs.entity_last_hidden_state[:, 0, :] | |
feature_vector = self.dropout(feature_vector) | |
logits = self.classifier(feature_vector) | |
loss = None | |
if labels is not None: | |
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary | |
# cross entropy is used otherwise. | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
if labels.ndim == 1: | |
loss = nn.functional.cross_entropy(logits, labels) | |
else: | |
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] | |
if v is not None | |
) | |
return EntityClassificationOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForEntityPairClassification(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.luke = LukeModel(config) | |
self.num_labels = config.num_labels | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, EntityPairClassificationOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): | |
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is | |
used for the single-label classification. In this case, labels should contain the indices that should be in | |
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy | |
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 | |
and 1 indicate false and true, respectively. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, LukeForEntityPairClassification | |
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") | |
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") | |
>>> text = "Beyoncé lives in Los Angeles." | |
>>> entity_spans = [ | |
... (0, 7), | |
... (17, 28), | |
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" | |
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> predicted_class_idx = logits.argmax(-1).item() | |
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) | |
Predicted class: per:cities_of_residence | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
feature_vector = torch.cat( | |
[outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 | |
) | |
feature_vector = self.dropout(feature_vector) | |
logits = self.classifier(feature_vector) | |
loss = None | |
if labels is not None: | |
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary | |
# cross entropy is used otherwise. | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
if labels.ndim == 1: | |
loss = nn.functional.cross_entropy(logits, labels) | |
else: | |
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] | |
if v is not None | |
) | |
return EntityPairClassificationOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForEntitySpanClassification(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.luke = LukeModel(config) | |
self.num_labels = config.num_labels | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.LongTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
entity_start_positions: Optional[torch.LongTensor] = None, | |
entity_end_positions: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, EntitySpanClassificationOutput]: | |
r""" | |
entity_start_positions (`torch.LongTensor`): | |
The start positions of entities in the word token sequence. | |
entity_end_positions (`torch.LongTensor`): | |
The end positions of entities in the word token sequence. | |
labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): | |
Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross | |
entropy loss is used for the single-label classification. In this case, labels should contain the indices | |
that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, | |
num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, | |
labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, LukeForEntitySpanClassification | |
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") | |
>>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") | |
>>> text = "Beyoncé lives in Los Angeles" | |
# List all possible entity spans in the text | |
>>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens | |
>>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens | |
>>> entity_spans = [] | |
>>> for i, start_pos in enumerate(word_start_positions): | |
... for end_pos in word_end_positions[i:]: | |
... entity_spans.append((start_pos, end_pos)) | |
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() | |
>>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): | |
... if predicted_class_idx != 0: | |
... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx]) | |
Beyoncé PER | |
Los Angeles LOC | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
hidden_size = outputs.last_hidden_state.size(-1) | |
entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) | |
if entity_start_positions.device != outputs.last_hidden_state.device: | |
entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device) | |
start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) | |
entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) | |
if entity_end_positions.device != outputs.last_hidden_state.device: | |
entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device) | |
end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) | |
feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) | |
feature_vector = self.dropout(feature_vector) | |
logits = self.classifier(feature_vector) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
# When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary | |
# cross entropy is used otherwise. | |
if labels.ndim == 2: | |
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) | |
else: | |
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] | |
if v is not None | |
) | |
return EntitySpanClassificationOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForSequenceClassification(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.luke = LukeModel(config) | |
self.dropout = nn.Dropout( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, LukeSequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
pooled_output = outputs.pooler_output | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] | |
if v is not None | |
) | |
return LukeSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForTokenClassification(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.luke = LukeModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, LukeTokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
sequence_output = outputs.last_hidden_state | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] | |
if v is not None | |
) | |
return LukeTokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForQuestionAnswering(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.luke = LukeModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.FloatTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
start_positions: Optional[torch.LongTensor] = None, | |
end_positions: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
sequence_output = outputs.last_hidden_state | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions.clamp_(0, ignored_index) | |
end_positions.clamp_(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
total_loss, | |
start_logits, | |
end_logits, | |
outputs.hidden_states, | |
outputs.entity_hidden_states, | |
outputs.attentions, | |
] | |
if v is not None | |
) | |
return LukeQuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |
class LukeForMultipleChoice(LukePreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.luke = LukeModel(config) | |
self.dropout = nn.Dropout( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
entity_ids: Optional[torch.LongTensor] = None, | |
entity_attention_mask: Optional[torch.FloatTensor] = None, | |
entity_token_type_ids: Optional[torch.LongTensor] = None, | |
entity_position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, LukeMultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None | |
entity_attention_mask = ( | |
entity_attention_mask.view(-1, entity_attention_mask.size(-1)) | |
if entity_attention_mask is not None | |
else None | |
) | |
entity_token_type_ids = ( | |
entity_token_type_ids.view(-1, entity_token_type_ids.size(-1)) | |
if entity_token_type_ids is not None | |
else None | |
) | |
entity_position_ids = ( | |
entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1)) | |
if entity_position_ids is not None | |
else None | |
) | |
outputs = self.luke( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
entity_ids=entity_ids, | |
entity_attention_mask=entity_attention_mask, | |
entity_token_type_ids=entity_token_type_ids, | |
entity_position_ids=entity_position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
pooled_output = outputs.pooler_output | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(reshaped_logits.device) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
loss, | |
reshaped_logits, | |
outputs.hidden_states, | |
outputs.entity_hidden_states, | |
outputs.attentions, | |
] | |
if v is not None | |
) | |
return LukeMultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
entity_hidden_states=outputs.entity_hidden_states, | |
attentions=outputs.attentions, | |
) | |