Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mamba
/configuration_mamba.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MAMBA configuration""" | |
import math | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MambaConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the MAMBA | |
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50280): | |
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`MambaModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
state_size (`int`, *optional*, defaults to 16): shape of the state space latents. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the model. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 0): | |
The id of the beginning of sentence token in the vocabulary. | |
eos_token_id (`int`, *optional*, defaults to 0): | |
The id of the end of sentence token in the vocabulary. | |
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. | |
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. | |
use_bias (`bool`, *optional*, defaults to `False`): | |
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block | |
use_conv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to use bias in the convolution layer of the mixer block. | |
hidden_act (`str`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
initializer_range (`float`, *optional*, defaults to 0.1): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
residual_in_fp32 (`bool`, *optional*, defaults to `True`): | |
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model | |
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): | |
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` | |
time_step_scale (`float`, *optional*, defaults to 1.0): | |
Scale used used to scale `dt_proj.bias`. | |
time_step_min (`float`, *optional*, defaults to 0.001): | |
Minimum `time_step` used to bound `dt_proj.bias`. | |
time_step_max (`float`, *optional*, defaults to 0.1): | |
Maximum `time_step` used to bound `dt_proj.bias`. | |
time_step_init_scheme (`float`, *optional*, defaults to `"random"`): | |
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` | |
time_step_floor (`float`, *optional*, defaults to 0.0001): | |
Minimum clamping value of the `dt_proj.bias` layer initialization. | |
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): | |
Whether or not to rescale `out_proj` weights when initializing. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the cache should be used. | |
use_mambapy (`bool`, *optional*, defaults to `False`): | |
Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited. | |
Example: | |
```python | |
>>> from transformers import MambaConfig, MambaModel | |
>>> # Initializing a Mamba configuration | |
>>> configuration = MambaConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = MambaModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "mamba" | |
def __init__( | |
self, | |
vocab_size=50280, | |
hidden_size=768, | |
state_size=16, | |
num_hidden_layers=32, | |
layer_norm_epsilon=1e-5, | |
pad_token_id=0, | |
bos_token_id=0, | |
eos_token_id=0, | |
expand=2, | |
conv_kernel=4, | |
use_bias=False, | |
use_conv_bias=True, | |
hidden_act="silu", | |
initializer_range=0.1, | |
residual_in_fp32=True, | |
time_step_rank="auto", | |
time_step_scale=1.0, | |
time_step_min=0.001, | |
time_step_max=0.1, | |
time_step_init_scheme="random", | |
time_step_floor=1e-4, | |
rescale_prenorm_residual=False, | |
use_cache=True, | |
use_mambapy=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.state_size = state_size | |
self.num_hidden_layers = num_hidden_layers | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.conv_kernel = conv_kernel | |
self.expand = expand | |
self.intermediate_size = int(expand * self.hidden_size) | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.use_bias = use_bias | |
self.use_conv_bias = use_conv_bias | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank | |
self.time_step_scale = time_step_scale | |
self.time_step_min = time_step_min | |
self.time_step_max = time_step_max | |
self.time_step_init_scheme = time_step_init_scheme | |
self.time_step_floor = time_step_floor | |
self.rescale_prenorm_residual = rescale_prenorm_residual | |
self.residual_in_fp32 = residual_in_fp32 | |
self.use_cache = use_cache | |
self.use_mambapy = use_mambapy | |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs) | |