Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mamba2
/configuration_mamba2.py
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MAMBA2 configuration""" | |
import math | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class Mamba2Config(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2 | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the MAMBA2 | |
[state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
num_heads (`int`, *optional*, defaults to 128): | |
Number of heads for the evolution matrices of mamba 2. | |
head_dim (`int`, *optional*, defaults to 64): | |
Dimension of each head. | |
vocab_size (`int`, *optional*, defaults to 32768): | |
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Mamba2Model`]. | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimensionality of the embeddings and hidden states. | |
state_size (`int`, *optional*, defaults to 128): shape of the state space latents. | |
num_hidden_layers (`int`, *optional*, defaults to 64): | |
Number of hidden layers in the model. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
pad_token_id (`int`, *optional*, defaults to 1): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 0): | |
The id of the beginning of sentence token in the vocabulary. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the end of sentence token in the vocabulary. | |
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. | |
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. | |
n_groups (`int`, *optional*, defaults to 8): | |
Number of groups for the evolution matrices of mamba 2. | |
use_bias (`bool`, *optional*, defaults to `False`): | |
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block | |
use_conv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to use bias in the convolution layer of the mixer block. | |
hidden_act (`str`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
initializer_range (`float`, *optional*, defaults to 0.1): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
residual_in_fp32 (`bool`, *optional*, defaults to `True`): | |
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model | |
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): | |
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` | |
time_step_min (`float`, *optional*, defaults to 0.001): | |
Minimum `time_step` used to bound `dt_proj.bias`. | |
time_step_max (`float`, *optional*, defaults to 0.1): | |
Maximum `time_step` used to bound `dt_proj.bias`. | |
time_step_floor (`float`, *optional*, defaults to 0.0001): | |
Minimum clamping value of the `dt_proj.bias` layer initialization. | |
time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`): | |
Accepted range of time step values. | |
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): | |
Whether or not to rescale `out_proj` weights when initializing. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the cache should be used. | |
norm_before_gate (`bool`, *optional*, defaults to `True`): | |
Option of cuda kernels -whether to normalize before the gate or not. | |
rms_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use RMS norm or not. | |
chunk_size (`int`, *optional*, defaults to 256): | |
Size of the chunks that will comprise the sequence. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie word embeddings or not. | |
Example: | |
```python | |
>>> from transformers import Mamba2Config, Mamba2Model | |
>>> # Initializing a Mamba2 configuration | |
>>> configuration = Mamba2Config() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = Mamba2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "mamba2" | |
def __init__( | |
self, | |
num_heads=128, | |
head_dim=64, | |
vocab_size=32768, | |
hidden_size=4096, | |
state_size=128, | |
num_hidden_layers=64, | |
layer_norm_epsilon=1e-5, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
expand=2, | |
conv_kernel=4, | |
n_groups=8, | |
use_bias=False, | |
use_conv_bias=True, | |
hidden_act="silu", | |
initializer_range=0.1, | |
residual_in_fp32=True, | |
time_step_rank="auto", | |
time_step_min=0.001, | |
time_step_max=0.1, | |
time_step_floor=1e-4, | |
time_step_limit=(0.0, float("inf")), | |
rescale_prenorm_residual=False, | |
use_cache=True, | |
norm_before_gate=True, | |
rms_norm=True, | |
chunk_size=256, | |
tie_word_embeddings=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.state_size = state_size | |
self.num_hidden_layers = num_hidden_layers | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.conv_kernel = conv_kernel | |
self.expand = expand | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.pad_token_id = pad_token_id | |
self.use_bias = use_bias | |
self.use_conv_bias = use_conv_bias | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank | |
self.time_step_min = time_step_min | |
self.time_step_max = time_step_max | |
self.time_step_floor = time_step_floor | |
self.rescale_prenorm_residual = rescale_prenorm_residual | |
self.residual_in_fp32 = residual_in_fp32 | |
self.use_cache = use_cache | |
self.n_groups = n_groups | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.norm_before_gate = norm_before_gate | |
self.rms_norm = rms_norm | |
self.state_size = state_size | |
self.chunk_size = chunk_size | |
self.time_step_limit = time_step_limit | |
self.tie_word_embeddings = tie_word_embeddings | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
pad_token_id=pad_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |