Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mamba2
/modeling_mamba2.py
# coding=utf-8 | |
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch MAMBA2 model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
) | |
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available | |
from .configuration_mamba2 import Mamba2Config | |
logger = logging.get_logger(__name__) | |
if is_mamba_2_ssm_available(): | |
from mamba_ssm.ops.triton.selective_state_update import selective_state_update | |
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined | |
else: | |
selective_state_update = None | |
if is_causal_conv1d_available(): | |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | |
else: | |
causal_conv1d_update, causal_conv1d_fn = None, None | |
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update)) | |
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1" | |
_CONFIG_FOR_DOC = "Mamba2Config" | |
# Helper methods for segment sum computation | |
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): | |
""" | |
Padding x tensor with `pad_size` on the seq_len dim (dim=1) | |
Assumes that we only have tensors of either size 4 or 3 | |
""" | |
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) | |
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) | |
def reshape_into_chunks(input_tensor, pad_size, chunk_size): | |
""" | |
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and | |
simultaneously splitting it into chunk sequences. | |
Assumes that we only have tensors of either size 4 or 3 | |
""" | |
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...] | |
input_tensor = pad_tensor_by_size(input_tensor, pad_size) | |
if len(input_tensor.shape) == 3: | |
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads] | |
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) | |
else: | |
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size] | |
return input_tensor.reshape( | |
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] | |
) | |
def segment_sum(input_tensor): | |
""" | |
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. | |
""" | |
chunk_size = input_tensor.size(-1) | |
# 1. expand input tensor to have an additional dimension and repeat along that dimension | |
# [..., chunk_size] -> [..., chunk_size, chunk_size] | |
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) | |
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag | |
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) | |
input_tensor = input_tensor.masked_fill(~mask, 0) | |
# 3. compute actual cumsum | |
tensor_segsum = torch.cumsum(input_tensor, dim=-2) | |
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time) | |
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) | |
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) | |
return tensor_segsum | |
class Mamba2Cache: | |
""" | |
Arguments: | |
config: Mamba2Config | |
batch_size: int | |
dtype: torch.dtype | |
device: torch.device | |
Attributes: | |
seqlen_offset: int | |
dtype: torch.dtype | |
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size] | |
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size] | |
""" | |
def __init__( | |
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None | |
): | |
self.seqlen_offset = 0 | |
self.dtype = dtype | |
self.conv_kernel_size = config.conv_kernel | |
self.intermediate_size = int(config.expand * config.hidden_size) | |
self.conv_states = { | |
i: torch.zeros( | |
batch_size, | |
self.intermediate_size + 2 * config.n_groups * config.state_size, | |
self.conv_kernel_size, | |
device=device, | |
dtype=dtype, | |
) | |
for i in range(config.num_hidden_layers) | |
} | |
self.ssm_states = { | |
i: torch.zeros( | |
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype | |
) | |
for i in range(config.num_hidden_layers) | |
} | |
self.activation = config.hidden_act | |
self.act = ACT2FN[config.hidden_act] | |
def update_conv_state( | |
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor | |
) -> torch.Tensor: | |
conv_state = self.conv_states[layer_idx] | |
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1) | |
conv_state = conv_state.roll(shifts=-1, dims=-1) | |
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device) | |
self.conv_states[layer_idx].zero_() | |
self.conv_states[layer_idx] += conv_state | |
return self.conv_states[layer_idx] | |
def reset(self): | |
self.conv_states.zero_() | |
self.ssm_states.zero_() | |
class MambaRMSNormGated(torch.nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states, gate=None): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
if gate is not None: | |
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32)) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class Mamba2Mixer(nn.Module): | |
""" | |
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. | |
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) | |
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, | |
and is why Mamba is called **selective** state spaces) | |
""" | |
def __init__(self, config: Mamba2Config, layer_idx: int): | |
super().__init__() | |
self.num_heads = config.num_heads | |
self.hidden_size = config.hidden_size | |
self.ssm_state_size = config.state_size | |
self.conv_kernel_size = config.conv_kernel | |
self.intermediate_size = int(config.expand * self.hidden_size) | |
self.time_step_rank = int(config.time_step_rank) | |
self.layer_idx = layer_idx | |
self.use_conv_bias = config.use_conv_bias | |
self.activation = config.hidden_act | |
self.act = ACT2FN[config.hidden_act] | |
self.norm_before_gate = config.norm_before_gate | |
self.layer_norm_epsilon = config.layer_norm_epsilon | |
self.rms_norm = config.rms_norm | |
self.n_groups = config.n_groups | |
self.head_dim = config.head_dim | |
self.chunk_size = config.chunk_size | |
self.time_step_limit = config.time_step_limit | |
self.time_step_min = config.time_step_min | |
self.time_step_max = config.time_step_max | |
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size | |
self.conv1d = nn.Conv1d( | |
in_channels=self.conv_dim, | |
out_channels=self.conv_dim, | |
bias=config.use_conv_bias, | |
kernel_size=config.conv_kernel, | |
groups=self.conv_dim, | |
padding=config.conv_kernel - 1, | |
) | |
# projection of the input hidden states | |
projection_size = self.intermediate_size + self.conv_dim + self.num_heads | |
self.in_proj = nn.Linear( | |
self.hidden_size, | |
projection_size, | |
bias=config.use_bias, | |
) | |
# selective projection used to make dt, B and C input dependant | |
# time step projection (discretization) | |
# instantiate once and copy inv_dt in init_weights of PretrainedModel | |
self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) | |
# S4D real initialization. These are not discretized! | |
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded | |
A = torch.arange(1, self.num_heads + 1) | |
self.A_log = nn.Parameter(torch.log(A)) | |
self.A_log._no_weight_decay = True | |
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon) | |
self.D = nn.Parameter(torch.ones(self.num_heads)) | |
self.D._no_weight_decay = True | |
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) | |
self.use_bias = config.use_bias | |
if not is_fast_path_available: | |
logger.warning_once( | |
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" | |
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" | |
" https://github.com/Dao-AILab/causal-conv1d" | |
) | |
def cuda_kernels_forward( | |
self, | |
hidden_states: torch.Tensor, | |
cache_params: Optional[Mamba2Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
): | |
# set up dimensions for reshapes later | |
batch_size, seq_len, _ = hidden_states.shape | |
groups_time_state_size = self.n_groups * self.ssm_state_size | |
d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads | |
# getting projected states from cache if it exists | |
if cache_params is not None and cache_params.seqlen_offset > 0: | |
in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D) | |
d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2 | |
split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads] | |
_, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1) | |
hidden_states_B_C = causal_conv1d_update( | |
hidden_states_B_C, | |
cache_params.conv_states[self.layer_idx], | |
self.conv1d.weight.squeeze(1), | |
self.conv1d.bias, | |
self.activation, | |
) | |
hidden_states, B, C = torch.split( | |
hidden_states_B_C, | |
[self.intermediate_size, groups_time_state_size, groups_time_state_size], | |
dim=-1, | |
) | |
A = -torch.exp(self.A_log.float()) # (nheads,) | |
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) | |
dt = dt[:, :, None].expand(-1, -1, self.head_dim) | |
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) | |
D = self.D[:, None, ...].expand(-1, self.head_dim) | |
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) | |
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) | |
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) | |
hidden_states = selective_state_update( | |
cache_params.ssm_states[self.layer_idx], | |
hidden_states_reshaped, | |
dt, | |
A, | |
B, | |
C, | |
D, | |
z=None, | |
dt_bias=dt_bias, | |
dt_softplus=True, | |
) | |
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) | |
hidden_states = self.norm(hidden_states, gate) | |
out = self.out_proj(hidden_states)[:, None, ...] | |
# if no cache is found, calling the kernel | |
else: | |
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | |
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 | |
dtype = hidden_states.dtype | |
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | |
# 1. Gated MLP's linear projection | |
projected_states = self.in_proj(hidden_states) | |
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size) | |
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit} | |
if self.training and cache_params is None: | |
out, ssm_state = mamba_split_conv1d_scan_combined( | |
projected_states, | |
self.conv1d.weight.squeeze(1), | |
self.conv1d.bias, | |
self.dt_bias, | |
A, | |
D=self.D, | |
chunk_size=self.chunk_size, | |
seq_idx=None, # was seq_idx | |
activation=self.activation, | |
rmsnorm_weight=self.norm.weight, | |
rmsnorm_eps=self.norm.variance_epsilon, | |
outproj_weight=self.out_proj.weight, | |
outproj_bias=self.out_proj.bias, | |
headdim=self.head_dim, | |
ngroups=self.n_groups, | |
norm_before_gate=self.norm_before_gate, | |
return_final_states=True, | |
**dt_limit_kwargs, | |
) | |
else: | |
gate, hidden_states_B_C, time_step = torch.split( | |
projected_states, | |
[self.intermediate_size, self.conv_dim, self.num_heads], | |
dim=-1, | |
) | |
time_step = nn.functional.softplus(time_step + self.dt_bias) | |
# 1D Convolution | |
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]: | |
hidden_states_B_C = self.act( | |
self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len] | |
) # (B, L, self.d_inner + 2 * ngroups * d_state) | |
else: | |
hidden_states_B_C = causal_conv1d_fn( | |
x=hidden_states_B_C.transpose(1, 2), | |
weight=self.conv1d.weight.squeeze(1), | |
bias=self.conv1d.bias, | |
activation=self.activation, | |
).transpose(1, 2)[:, :seq_len] | |
hidden_states, B, C = torch.split( | |
hidden_states_B_C, | |
[self.intermediate_size, groups_time_state_size, groups_time_state_size], | |
dim=-1, | |
) | |
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | |
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 | |
dtype = hidden_states.dtype | |
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | |
scan_output, ssm_state = mamba_chunk_scan_combined( | |
hidden_states.view(batch_size, seq_len, -1, self.head_dim), | |
time_step, | |
A, | |
B.view(batch_size, seq_len, self.n_groups, -1), | |
C.view(batch_size, seq_len, self.n_groups, -1), | |
chunk_size=self.chunk_size, | |
D=self.D, | |
z=None, | |
seq_idx=None, | |
return_final_states=True, | |
**dt_limit_kwargs, | |
) | |
if ssm_state is not None and cache_params is not None: | |
cache_params.ssm_states[self.layer_idx].copy_(ssm_state) | |
scan_output = scan_output.view(batch_size, seq_len, -1) | |
# Multiply "gate" branch and apply extra normalization layer | |
scan_output = self.norm(scan_output, gate) | |
out = self.out_proj(scan_output) | |
return out | |
# fmt: off | |
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None): | |
batch_size, seq_len, _ = input_states.shape | |
dtype = input_states.dtype | |
# Gated MLP's linear projection | |
projected_states = self.in_proj(input_states.squeeze(1)) | |
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2 | |
_, _, gate, hidden_states, dt = projected_states.split( | |
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 | |
) | |
# Convolution sequence transformation | |
if cache_params is not None: | |
ssm_state = cache_params.ssm_states[self.layer_idx].clone() | |
ssm_state = ssm_state.to(hidden_states.device) | |
if cache_params.seqlen_offset > 0: | |
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] | |
conv_state = torch.roll(conv_state, shifts=-1, dims=-1) | |
# handle batched generation - states are copied through | |
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states | |
cache_params.conv_states[self.layer_idx].copy_(conv_state) | |
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1) | |
if self.use_conv_bias: | |
hidden_states += self.conv1d.bias | |
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding | |
else: | |
hidden_states = hidden_states.transpose(1,2) | |
conv_state = nn.functional.pad( | |
hidden_states, | |
(self.conv_kernel_size - hidden_states.shape[-1], 0) | |
) | |
cache_params.conv_states[self.layer_idx].copy_(conv_state) | |
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len] | |
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | |
dtype = hidden_states.dtype | |
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 | |
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | |
else: | |
ssm_state = torch.zeros( | |
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size), | |
device=hidden_states.device, dtype=dtype | |
) | |
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2)) | |
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1) | |
A = -torch.exp(self.A_log.float()) # [num_heads] | |
if cache_params is not None and cache_params.seqlen_offset > 0: | |
# Note: there is no need to pad parameter matrices here, as there is just one new token | |
# for batched generation | |
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...] | |
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) | |
# [num_heads] -> [num_heads, head_dim] | |
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) | |
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) | |
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max) | |
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) | |
# [bsz, num_heads, head_dim, state_size] | |
dA = torch.exp(dt[..., None] * A) | |
# Discretize B | |
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] -> | |
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size] | |
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] | |
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() | |
B = B.reshape(batch_size, -1, B.shape[-1]) | |
# [bsz, num_heads, head_dim, state_size] | |
dB = dt[..., None] * B[..., None, :] | |
# Discretize x into dB | |
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim] | |
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) | |
dBx = dB * hidden_states[..., None] | |
# State calculation | |
cache_params.ssm_states[self.layer_idx].copy_( | |
cache_params.ssm_states[self.layer_idx] * dA + dBx | |
) | |
# Subsequent output | |
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size] | |
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] | |
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() | |
C = C.reshape(batch_size, -1, C.shape[-1]) | |
# [bsz, num_heads, head_dim] | |
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n] | |
# Reshape ssm_states to merge the first two dimensions | |
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n] | |
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1] | |
y = torch.bmm(ssm_states_reshaped, C_reshaped) | |
y = y.view(batch_size, self.num_heads, self.head_dim) | |
# D skip connection | |
# [num_heads] -> [num_heads, head_dim] | |
D = self.D[..., None].expand(self.D.shape[0], self.head_dim) | |
y = (y + hidden_states * D).to(y.dtype) | |
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size] | |
y = y.reshape(batch_size, -1)[:, None, ...] | |
else: | |
# begin ssd naive implementation without einsums | |
dt = nn.functional.softplus(dt + self.dt_bias) | |
dt = torch.clamp(dt, self.time_step_min) | |
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() | |
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() | |
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() | |
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) | |
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) | |
pad_size = self.chunk_size - (seq_len % self.chunk_size) | |
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) | |
# Discretize x and A | |
hidden_states = hidden_states * dt[..., None] | |
A = A.to(hidden_states.dtype) * dt | |
# Rearrange into blocks/chunks | |
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] | |
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size] | |
A = A.permute(0, 3, 1, 2) | |
A_cumsum = torch.cumsum(A, dim=-1) | |
# 1. Compute the output for each intra-chunk (diagonal blocks) | |
# This is the analog of a causal mask | |
L = torch.exp(segment_sum(A)) | |
# First, contraction of C and B to get G (attention-weights like) | |
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n) | |
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h) | |
# Step 2: Compute M, equivalent to applying attention mask to weights | |
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] | |
M = M_intermediate.sum(dim=-1) | |
# Step 3: Compute Y_diag (apply to values) | |
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3) | |
# (right term of low-rank factorization of off-diagonal blocks; B terms) | |
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) | |
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None] | |
# permute back B * decay states | |
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3) | |
if cache_params is not None and cache_params.seqlen_offset > 0: | |
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...] | |
else: | |
previous_states = torch.zeros_like(states[:, :1]) | |
states = torch.cat([previous_states, states], dim=1) | |
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) | |
states_permuted = states.permute(0, 2, 1, 3, 4) | |
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2) | |
new_states = result.permute(0, 2, 1, 3, 4) | |
states, ssm_state = new_states[:, :-1], new_states[:, -1] | |
# Compute state -> output conversion per chunk | |
# (left term of low-rank factorization of off-diagonal blocks; C terms) | |
state_decay_out = torch.exp(A_cumsum) | |
# compute Yoff | |
C_times_states = (C[..., None, :] * states[:, :, None, ...]) | |
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) | |
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) | |
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) | |
y = Y_diag + Y_off | |
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim] | |
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) | |
y = y + D_residual | |
# Cutting off padded chunks | |
if pad_size > 0: | |
y = y[:, :seq_len, :, :] | |
y = y.reshape(batch_size, seq_len, -1) | |
if ssm_state is not None and cache_params is not None: | |
cache_params.ssm_states[self.layer_idx].copy_(ssm_state) | |
scan_output = self.norm(y, gate) | |
# end ssd naive | |
# 4. Final linear projection | |
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size] | |
return contextualized_states | |
# fmt: on | |
def forward( | |
self, | |
hidden_states, | |
cache_params: Optional[Mamba2Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
): | |
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: | |
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) | |
dtype = hidden_states.dtype | |
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | |
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66 | |
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | |
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask) | |
class Mamba2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class Mamba2Block(nn.Module): | |
def __init__(self, config, layer_idx): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
self.residual_in_fp32 = config.residual_in_fp32 | |
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx) | |
def forward( | |
self, | |
hidden_states, | |
cache_params: Optional[Mamba2Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
): | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) | |
if self.residual_in_fp32: | |
residual = residual.to(torch.float32) | |
hidden_states = self.mixer( | |
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask | |
) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class Mamba2PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Mamba2Config | |
base_model_prefix = "backbone" | |
_no_split_modules = ["Mamba2Block"] | |
supports_gradient_checkpointing = True | |
_is_stateful = True | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, Mamba2Mixer): | |
module.A_log._no_weight_decay = True | |
module.D._no_weight_decay = True | |
dt = torch.exp( | |
torch.rand(self.config.num_heads) | |
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) | |
+ math.log(self.config.time_step_min) | |
).clamp(min=self.config.time_step_floor) | |
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 | |
inv_dt = dt + torch.log(-torch.expm1(-dt)) | |
with torch.no_grad(): | |
module.dt_bias.copy_(inv_dt) | |
module.dt_bias._no_reinit = True | |
if isinstance(module, nn.Linear): | |
if module.bias is not None: | |
if not getattr(module.bias, "_no_reinit", False): | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, std=self.config.initializer_range) | |
if self.config.rescale_prenorm_residual: | |
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
# > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
# | |
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
for name, p in module.named_parameters(): | |
if name in ["out_proj.weight"]: | |
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer) | |
# We need to reinit p since this code could be called multiple times | |
# Having just p *= scale would repeatedly scale it down | |
nn.init.kaiming_uniform_(p, a=math.sqrt(5)) | |
with torch.no_grad(): | |
p /= math.sqrt(self.config.num_hidden_layers) | |
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2 | |
class Mamba2Output(ModelOutput): | |
""" | |
Class for the MAMBA2 model outputs. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
cache_params (`Mamba2Cache`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
Includes both the State space model state matrices after the selective scan, and the Convolutional states | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
""" | |
last_hidden_state: Optional[torch.FloatTensor] = None | |
cache_params: Optional[Mamba2Cache] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2 | |
class Mamba2CausalLMOutput(ModelOutput): | |
""" | |
Base class for causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
cache_params (`Mamba2Cache`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
Includes both the State space model state matrices after the selective scan, and the Convolutional states | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: Optional[torch.FloatTensor] = None | |
cache_params: Optional[Mamba2Cache] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
MAMBA2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
MAMBA2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as | |
`input_ids`. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
cache_params (`Mamba2Cache`, *optional*): | |
If passed along, the model uses the previous state in all the blocks (which will give the output for the | |
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). | |
use_cache (`bool`, *optional*): | |
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Mamba2Model(Mamba2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
# Initialize weights and apply final processing | |
self._register_load_state_dict_pre_hook(self.load_hook) | |
self.post_init() | |
def load_hook(self, state_dict, prefix, *args): | |
for k in state_dict: | |
if "embedding." in k: | |
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) | |
break | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.LongTensor] = None, | |
cache_params: Optional[Mamba2Cache] = None, | |
use_cache: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> Union[Tuple, Mamba2Output]: | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
) | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings(input_ids) | |
if self.gradient_checkpointing and self.training and use_cache: | |
use_cache = False | |
if use_cache: | |
if cache_params is None: | |
cache_params = Mamba2Cache( | |
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype | |
) | |
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) | |
elif cache_position is None: | |
# cases when we do manual forward instead of using `model.generate` which will initiate | |
# `cache_position` and makes sure it is not None, throw error here instead of doing some | |
# hack to conjecture the current cache position | |
raise ValueError( | |
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " | |
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " | |
"be initialized for you automatically" | |
) | |
else: | |
cache_params = None | |
hidden_states = inputs_embeds | |
all_hidden_states = () if output_hidden_states else None | |
for mixer_block in self.layers: | |
if self.gradient_checkpointing and self.training: | |
hidden_states = self._gradient_checkpointing_func( | |
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask | |
) | |
else: | |
hidden_states = mixer_block( | |
hidden_states, | |
cache_params=cache_params, | |
cache_position=cache_position, | |
attention_mask=attention_mask, | |
) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if use_cache: | |
cache_params.seqlen_offset += inputs_embeds.shape[1] | |
hidden_states = self.norm_f(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) | |
return Mamba2Output( | |
last_hidden_state=hidden_states, | |
cache_params=cache_params if use_cache else None, | |
hidden_states=all_hidden_states, | |
) | |
class Mamba2ForCausalLM(Mamba2PreTrainedModel): | |
_tied_weights_keys = [] | |
def __init__(self, config): | |
super().__init__(config) | |
self.backbone = Mamba2Model(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def get_input_embeddings(self): | |
return self.backbone.get_input_embeddings() | |
def set_input_embeddings(self, new_embeddings): | |
return self.backbone.set_input_embeddings(new_embeddings) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
inputs_embeds=None, | |
use_cache=None, | |
cache_params: Optional[Mamba2Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**kwargs, | |
): | |
if input_ids.shape[1] == 0: | |
past_len = inputs_embeds.shape[1] | |
else: | |
past_len = input_ids.shape[1] | |
if use_cache: | |
# `cache_position` should have been initialized in `generate` | |
if cache_position is None: | |
raise ValueError( | |
"`cache_position` should not be None as it should have been initialized in " | |
"`model.generate`, you are responsible for passing in a valid `cache_position` if " | |
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" | |
) | |
# how do we detect that we are in decoding without cache? | |
if cache_position[0] > 0: | |
input_ids = input_ids[:, -1][..., None] | |
attention_mask = attention_mask[:, -1][..., None] | |
else: | |
# we initialize the `cache_position` to full size of `conv_states` at prefill stage | |
# considering padding will be applied when input length is shorter, and truncation | |
# will be applied when it is longer, so it will be equivalent to always have it match | |
# the length of `cache_params.conv_states`, which is `config.conv_kernel` | |
cache_position = torch.arange(0, past_len, device=input_ids.device) | |
# if the cache is not used, we also do have to extend the attention mask here | |
# TODO there is likely a cleverer way to do this | |
extended_mask = torch.ones( | |
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device | |
) | |
attention_mask = torch.cat([attention_mask, extended_mask], dim=1) | |
cache_params = None | |
if attention_mask.shape[1] < past_len: | |
# we have to update manually the attention mask if | |
# we are in decoding without cache | |
# and we don't have position_ids here | |
# TODO but we should be able to use cache_position though at a later time | |
extended_mask = torch.ones( | |
attention_mask.size(0), past_len - attention_mask.shape[1], device=attention_mask.device | |
) | |
attention_mask = torch.cat([attention_mask, extended_mask], dim=1) | |
if inputs_embeds is not None and cache_params is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"attention_mask": attention_mask, | |
"cache_params": cache_params, | |
"use_cache": use_cache, | |
"cache_position": cache_position, | |
} | |
) | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
cache_params: Optional[Mamba2Cache] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
use_cache: Optional[bool] = None, | |
cache_position: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**kwargs, # for now we need this for generation | |
) -> Union[Tuple, Mamba2CausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
mamba2_outputs = self.backbone( | |
input_ids, | |
cache_params=cache_params, | |
inputs_embeds=inputs_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
attention_mask=attention_mask, | |
) | |
hidden_states = mamba2_outputs[0] | |
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + mamba2_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Mamba2CausalLMOutput( | |
loss=loss, | |
logits=logits, | |
cache_params=mamba2_outputs.cache_params, | |
hidden_states=mamba2_outputs.hidden_states, | |
) | |