Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/marian
/tokenization_marian.py
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import re | |
import warnings | |
from pathlib import Path | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import sentencepiece | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"source_spm": "source.spm", | |
"target_spm": "target.spm", | |
"vocab": "vocab.json", | |
"target_vocab_file": "target_vocab.json", | |
"tokenizer_config_file": "tokenizer_config.json", | |
} | |
SPIECE_UNDERLINE = "▁" | |
# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json | |
class MarianTokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
source_spm (`str`): | |
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that | |
contains the vocabulary for the source language. | |
target_spm (`str`): | |
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that | |
contains the vocabulary for the target language. | |
source_lang (`str`, *optional*): | |
A string representing the source language. | |
target_lang (`str`, *optional*): | |
A string representing the target language. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
eos_token (`str`, *optional*, defaults to `"</s>"`): | |
The end of sequence token. | |
pad_token (`str`, *optional*, defaults to `"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
model_max_length (`int`, *optional*, defaults to 512): | |
The maximum sentence length the model accepts. | |
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): | |
Additional special tokens used by the tokenizer. | |
sp_model_kwargs (`dict`, *optional*): | |
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for | |
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, | |
to set: | |
- `enable_sampling`: Enable subword regularization. | |
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- `nbest_size = {0,1}`: No sampling is performed. | |
- `nbest_size > 1`: samples from the nbest_size results. | |
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
Examples: | |
```python | |
>>> from transformers import MarianForCausalLM, MarianTokenizer | |
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de") | |
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") | |
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."] | |
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional | |
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True) | |
>>> outputs = model(**inputs) # should work | |
```""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
language_code_re = re.compile(">>.+<<") # type: re.Pattern | |
def __init__( | |
self, | |
source_spm, | |
target_spm, | |
vocab, | |
target_vocab_file=None, | |
source_lang=None, | |
target_lang=None, | |
unk_token="<unk>", | |
eos_token="</s>", | |
pad_token="<pad>", | |
model_max_length=512, | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
separate_vocabs=False, | |
**kwargs, | |
) -> None: | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
assert Path(source_spm).exists(), f"cannot find spm source {source_spm}" | |
self.separate_vocabs = separate_vocabs | |
self.encoder = load_json(vocab) | |
if str(unk_token) not in self.encoder: | |
raise KeyError("<unk> token must be in the vocab") | |
assert str(pad_token) in self.encoder | |
if separate_vocabs: | |
self.target_encoder = load_json(target_vocab_file) | |
self.decoder = {v: k for k, v in self.target_encoder.items()} | |
self.supported_language_codes = [] | |
else: | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")] | |
self.source_lang = source_lang | |
self.target_lang = target_lang | |
self.spm_files = [source_spm, target_spm] | |
# load SentencePiece model for pre-processing | |
self.spm_source = load_spm(source_spm, self.sp_model_kwargs) | |
self.spm_target = load_spm(target_spm, self.sp_model_kwargs) | |
self.current_spm = self.spm_source | |
self.current_encoder = self.encoder | |
# Multilingual target side: default to using first supported language code. | |
self._setup_normalizer() | |
super().__init__( | |
# bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id | |
source_lang=source_lang, | |
target_lang=target_lang, | |
unk_token=unk_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
model_max_length=model_max_length, | |
sp_model_kwargs=self.sp_model_kwargs, | |
target_vocab_file=target_vocab_file, | |
separate_vocabs=separate_vocabs, | |
**kwargs, | |
) | |
def _setup_normalizer(self): | |
try: | |
from sacremoses import MosesPunctNormalizer | |
self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize | |
except (ImportError, FileNotFoundError): | |
warnings.warn("Recommended: pip install sacremoses.") | |
self.punc_normalizer = lambda x: x | |
def normalize(self, x: str) -> str: | |
"""Cover moses empty string edge case. They return empty list for '' input!""" | |
return self.punc_normalizer(x) if x else "" | |
def _convert_token_to_id(self, token): | |
return self.current_encoder.get(token, self.current_encoder[self.unk_token]) | |
def remove_language_code(self, text: str): | |
"""Remove language codes like >>fr<< before sentencepiece""" | |
match = self.language_code_re.match(text) | |
code: list = [match.group(0)] if match else [] | |
return code, self.language_code_re.sub("", text) | |
def _tokenize(self, text: str) -> List[str]: | |
code, text = self.remove_language_code(text) | |
pieces = self.current_spm.encode(text, out_type=str) | |
return code + pieces | |
def _convert_id_to_token(self, index: int) -> str: | |
"""Converts an index (integer) in a token (str) using the decoder.""" | |
return self.decoder.get(index, self.unk_token) | |
def batch_decode(self, sequences, **kwargs): | |
""" | |
Convert a list of lists of token ids into a list of strings by calling decode. | |
Args: | |
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): | |
List of tokenized input ids. Can be obtained using the `__call__` method. | |
skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to remove special tokens in the decoding. | |
clean_up_tokenization_spaces (`bool`, *optional*): | |
Whether or not to clean up the tokenization spaces. If `None`, will default to | |
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). | |
use_source_tokenizer (`bool`, *optional*, defaults to `False`): | |
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence | |
problems). | |
kwargs (additional keyword arguments, *optional*): | |
Will be passed to the underlying model specific decode method. | |
Returns: | |
`List[str]`: The list of decoded sentences. | |
""" | |
return super().batch_decode(sequences, **kwargs) | |
def decode(self, token_ids, **kwargs): | |
""" | |
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special | |
tokens and clean up tokenization spaces. | |
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. | |
Args: | |
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): | |
List of tokenized input ids. Can be obtained using the `__call__` method. | |
skip_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not to remove special tokens in the decoding. | |
clean_up_tokenization_spaces (`bool`, *optional*): | |
Whether or not to clean up the tokenization spaces. If `None`, will default to | |
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). | |
use_source_tokenizer (`bool`, *optional*, defaults to `False`): | |
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence | |
problems). | |
kwargs (additional keyword arguments, *optional*): | |
Will be passed to the underlying model specific decode method. | |
Returns: | |
`str`: The decoded sentence. | |
""" | |
return super().decode(token_ids, **kwargs) | |
def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
"""Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise""" | |
sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target | |
current_sub_tokens = [] | |
out_string = "" | |
for token in tokens: | |
# make sure that special tokens are not decoded using sentencepiece model | |
if token in self.all_special_tokens: | |
out_string += sp_model.decode_pieces(current_sub_tokens) + token + " " | |
current_sub_tokens = [] | |
else: | |
current_sub_tokens.append(token) | |
out_string += sp_model.decode_pieces(current_sub_tokens) | |
out_string = out_string.replace(SPIECE_UNDERLINE, " ") | |
return out_string.strip() | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: | |
"""Build model inputs from a sequence by appending eos_token_id.""" | |
if token_ids_1 is None: | |
return token_ids_0 + [self.eos_token_id] | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
return token_ids_0 + token_ids_1 + [self.eos_token_id] | |
def _switch_to_input_mode(self): | |
self.current_spm = self.spm_source | |
self.current_encoder = self.encoder | |
def _switch_to_target_mode(self): | |
self.current_spm = self.spm_target | |
if self.separate_vocabs: | |
self.current_encoder = self.target_encoder | |
def vocab_size(self) -> int: | |
return len(self.encoder) | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
saved_files = [] | |
if self.separate_vocabs: | |
out_src_vocab_file = os.path.join( | |
save_directory, | |
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"], | |
) | |
out_tgt_vocab_file = os.path.join( | |
save_directory, | |
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"], | |
) | |
save_json(self.encoder, out_src_vocab_file) | |
save_json(self.target_encoder, out_tgt_vocab_file) | |
saved_files.append(out_src_vocab_file) | |
saved_files.append(out_tgt_vocab_file) | |
else: | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"] | |
) | |
save_json(self.encoder, out_vocab_file) | |
saved_files.append(out_vocab_file) | |
for spm_save_filename, spm_orig_path, spm_model in zip( | |
[VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]], | |
self.spm_files, | |
[self.spm_source, self.spm_target], | |
): | |
spm_save_path = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename | |
) | |
if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path): | |
copyfile(spm_orig_path, spm_save_path) | |
saved_files.append(spm_save_path) | |
elif not os.path.isfile(spm_orig_path): | |
with open(spm_save_path, "wb") as fi: | |
content_spiece_model = spm_model.serialized_model_proto() | |
fi.write(content_spiece_model) | |
saved_files.append(spm_save_path) | |
return tuple(saved_files) | |
def get_vocab(self) -> Dict: | |
return self.get_src_vocab() | |
def get_src_vocab(self): | |
return dict(self.encoder, **self.added_tokens_encoder) | |
def get_tgt_vocab(self): | |
return dict(self.target_encoder, **self.added_tokens_decoder) | |
def __getstate__(self) -> Dict: | |
state = self.__dict__.copy() | |
state.update( | |
{k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]} | |
) | |
return state | |
def __setstate__(self, d: Dict) -> None: | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files) | |
self.current_spm = self.spm_source | |
self._setup_normalizer() | |
def num_special_tokens_to_add(self, *args, **kwargs): | |
"""Just EOS""" | |
return 1 | |
def _special_token_mask(self, seq): | |
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp | |
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special | |
return [1 if x in all_special_ids else 0 for x in seq] | |
def get_special_tokens_mask( | |
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
"""Get list where entries are [1] if a token is [eos] or [pad] else 0.""" | |
if already_has_special_tokens: | |
return self._special_token_mask(token_ids_0) | |
elif token_ids_1 is None: | |
return self._special_token_mask(token_ids_0) + [1] | |
else: | |
return self._special_token_mask(token_ids_0 + token_ids_1) + [1] | |
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: | |
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) | |
spm.Load(path) | |
return spm | |
def save_json(data, path: str) -> None: | |
with open(path, "w") as f: | |
json.dump(data, f, indent=2) | |
def load_json(path: str) -> Union[Dict, List]: | |
with open(path, "r") as f: | |
return json.load(f) | |