Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/markuplm
/configuration_markuplm.py
# coding=utf-8 | |
# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MarkupLM model configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MarkupLMConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a | |
MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the MarkupLM | |
[microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture. | |
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the | |
documentation from [`BertConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the | |
*inputs_ids* passed to the forward method of [`MarkupLMModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum value that the tree id unit embedding might ever use. Typically set this to something large | |
just in case (e.g., 1024). | |
max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256): | |
The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large | |
just in case (e.g., 256). | |
max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024): | |
The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something | |
large just in case (e.g., 1024). | |
tag_pad_id (`int`, *optional*, defaults to 216): | |
The id of the padding token in the xpath tags. | |
subs_pad_id (`int`, *optional*, defaults to 1001): | |
The id of the padding token in the xpath subscripts. | |
xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32): | |
The hidden size of each tree id unit. One complete tree index will have | |
(50*xpath_tag_unit_hidden_size)-dim. | |
max_depth (`int`, *optional*, defaults to 50): | |
The maximum depth in xpath. | |
Examples: | |
```python | |
>>> from transformers import MarkupLMModel, MarkupLMConfig | |
>>> # Initializing a MarkupLM microsoft/markuplm-base style configuration | |
>>> configuration = MarkupLMConfig() | |
>>> # Initializing a model from the microsoft/markuplm-base style configuration | |
>>> model = MarkupLMModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "markuplm" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
bos_token_id=0, | |
eos_token_id=2, | |
max_xpath_tag_unit_embeddings=256, | |
max_xpath_subs_unit_embeddings=1024, | |
tag_pad_id=216, | |
subs_pad_id=1001, | |
xpath_unit_hidden_size=32, | |
max_depth=50, | |
position_embedding_type="absolute", | |
use_cache=True, | |
classifier_dropout=None, | |
**kwargs, | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.classifier_dropout = classifier_dropout | |
# additional properties | |
self.max_depth = max_depth | |
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings | |
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings | |
self.tag_pad_id = tag_pad_id | |
self.subs_pad_id = subs_pad_id | |
self.xpath_unit_hidden_size = xpath_unit_hidden_size | |