Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/mobilebert
/configuration_mobilebert.py
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MobileBERT model configuration""" | |
from collections import OrderedDict | |
from typing import Mapping | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class MobileBertConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It | |
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT | |
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. | |
hidden_size (`int`, *optional*, defaults to 512): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 4): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 512): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or | |
[`TFMobileBertModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The ID of the token in the word embedding to use as padding. | |
embedding_size (`int`, *optional*, defaults to 128): | |
The dimension of the word embedding vectors. | |
trigram_input (`bool`, *optional*, defaults to `True`): | |
Use a convolution of trigram as input. | |
use_bottleneck (`bool`, *optional*, defaults to `True`): | |
Whether to use bottleneck in BERT. | |
intra_bottleneck_size (`int`, *optional*, defaults to 128): | |
Size of bottleneck layer output. | |
use_bottleneck_attention (`bool`, *optional*, defaults to `False`): | |
Whether to use attention inputs from the bottleneck transformation. | |
key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): | |
Whether to use the same linear transformation for query&key in the bottleneck. | |
num_feedforward_networks (`int`, *optional*, defaults to 4): | |
Number of FFNs in a block. | |
normalization_type (`str`, *optional*, defaults to `"no_norm"`): | |
The normalization type in MobileBERT. | |
classifier_dropout (`float`, *optional*): | |
The dropout ratio for the classification head. | |
Examples: | |
```python | |
>>> from transformers import MobileBertConfig, MobileBertModel | |
>>> # Initializing a MobileBERT configuration | |
>>> configuration = MobileBertConfig() | |
>>> # Initializing a model (with random weights) from the configuration above | |
>>> model = MobileBertModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
``` | |
""" | |
model_type = "mobilebert" | |
def __init__( | |
self, | |
vocab_size=30522, | |
hidden_size=512, | |
num_hidden_layers=24, | |
num_attention_heads=4, | |
intermediate_size=512, | |
hidden_act="relu", | |
hidden_dropout_prob=0.0, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
embedding_size=128, | |
trigram_input=True, | |
use_bottleneck=True, | |
intra_bottleneck_size=128, | |
use_bottleneck_attention=False, | |
key_query_shared_bottleneck=True, | |
num_feedforward_networks=4, | |
normalization_type="no_norm", | |
classifier_activation=True, | |
classifier_dropout=None, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.embedding_size = embedding_size | |
self.trigram_input = trigram_input | |
self.use_bottleneck = use_bottleneck | |
self.intra_bottleneck_size = intra_bottleneck_size | |
self.use_bottleneck_attention = use_bottleneck_attention | |
self.key_query_shared_bottleneck = key_query_shared_bottleneck | |
self.num_feedforward_networks = num_feedforward_networks | |
self.normalization_type = normalization_type | |
self.classifier_activation = classifier_activation | |
if self.use_bottleneck: | |
self.true_hidden_size = intra_bottleneck_size | |
else: | |
self.true_hidden_size = hidden_size | |
self.classifier_dropout = classifier_dropout | |
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert | |
class MobileBertOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "multiple-choice": | |
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
else: | |
dynamic_axis = {0: "batch", 1: "sequence"} | |
return OrderedDict( | |
[ | |
("input_ids", dynamic_axis), | |
("attention_mask", dynamic_axis), | |
("token_type_ids", dynamic_axis), | |
] | |
) | |